首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution technique has been used to study differentiation-related and leukemia-associated glycoproteins. Cells are labeled with the membrane-impermeable probe sulfo-N-hydroxysuccinimidyl-biotin. Nonionic detergent extracts are subjected to affinity chromatography on a number of immobilized lectins and after polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) and western transfer, the biotin-labeled glycoproteins are visualized by using avidin-horseradish peroxidase and 4-chloronaphthol. With the aid of the lectins concanavalin A, Dolichos biflouros agglutinin, Lens culinaris hemagglutinin, peanut agglutinin, pokeweed mitogen, Ricinus communus agglutinin I, soybean agglutinin, Ulex europeus agglutinin I (UEA), and wheat germ agglutinin, each purifies different glycoprotein subsets from the same cell type. Mature cells of distinct hematopoietic lineages differ considerably in their cell surface glycoprotein patterns. This technique was used to analyze the glycoproteins of human leukemia cells before and after the induction of differentiation. K562 cells differentiated along different lineages after treatment with phorbol 12-myristate 13-acetate, sodium butyrate, dimethyl sulfoxide, or hemin. Limited specific alterations were observed with a number of lectins when K562 erythroleukemia cells were induced to differentiate. Among these, a number of bands were identified that were either lost or appeared after induction of differentiation with all four agents. In contrast, the glycoproteins bound by UEA were drastically diminished after induction of differentiation, and the remaining UEA-bound glycoproteins bore little resemblance to those of the cells before treatment. This high-resolution technique may be useful as a general method for the examination of cell surface glycoprotein differences. Once specific glycoprotein alterations are detected, lectin affinity chromatography and SDS-PAGE allow purification of antigens for the production of monoclonal antibodies.  相似文献   

2.
Abstract. Substantial support has been obtained for the stochastic model for stem cell differentiation first proposed by Till, McCulloch & Siminovitch (1964), over 20 years ago. By adding a cell maturation pathway, it is possible to predict (by computer simulation) the total number of cells and consequently the time at which individual colonies appear and disappear.
Only a few uncontroversial assumptions are required to predict that cells, uniform with respect to self-renewal, are capable of producing the high proportions of late disappearing and late appearing colonies observed experimentally in the spleens of irradiated mice that have been injected with normal haemopoietic cells. It is shown that differences in stem cell self-renewal only slightly influence the time of appearance of colonies; whereas changes in the kinetics of the maturing cells, by changing the size of colonies, has a marked effect on the time of appearance and disappearance of colonies and on the average doubling-time of colony-forming cells per colony (but not the doubling-time of individual colonies).
These results (1) seriously question the prevailing view that spleen colonies scored at 8 days measure a separate population (without the capacity for self-renewal), from those scored at 12 days; (2) argue against the existence of multiple sub-populations of stem cells with differing self-renewal and toxicity to cytotoxic agents; (3) help to identify those experiments for which it is obligatory to postulate heterogeneity, and (4) are consistent with self-renewal being regulated by a feedback control of stem cell differentiation, to which only proliferating stem cells can respond and where the stimulus for differentiation decreases at a time when the bone marrow is known to be depleted.  相似文献   

3.
Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.  相似文献   

4.
5.
6.
表皮干细胞研究进展   总被引:4,自引:0,他引:4  
王丽娟  王友亮  杨晓 《遗传》2010,32(3):198-204
哺乳动物表皮中包含有多种不同类型的表皮干细胞, 它们共同维持了表皮组织结构的稳态并在皮肤创伤的修复中起重要作用。表皮干细胞具备干细胞两大基本特征: 自我更新和分化, 两者间平衡的破坏通常是皮肤肿瘤和其他皮肤疾病的根源。文章着重叙述了表皮干细胞存在的证据、两大基本特征、分裂模式、调节表皮干细胞的信号通路以及维持其稳态的微观和宏观环境。  相似文献   

7.
8.
9.
The role of cell surface glycoproteins in cell behavior can be characterized by their interactions with plant lectins. This study was designed to identify the effects of lectins on chondrogenesis and osteogenesis in limb bud mesenchymal cells in vitro. Limb bud mesenchymal cells from mouse embryos were cultured in high-density micromass culture. Wheat germ agglutinin (WGA), concanavalin A (ConA), peanut agglutinin (PNA), Dolichos biflorus agglutinin (DBA) and Ricinus communis agglutinin (RCA) were added separately to the culture media. Cells were cultured for 5 or 9 days, and cell viability was assayed by neutral red on day 5. The micromasses were stained with alcian blue, alizarin red S and Von Kossa stains, and alkaline phosphatase assays were also done. Dolichos biflorus agglutinin induced an increase in chondrogenesis, calcium precipitation and proteoglycan production. ConA and PNA did not affect chondrocyte differentiation but induced chondrocytes to produce more proteoglycan. Wheat germ agglutinin reduced chondrification and ossification but induced mesenchymal cells to store lipid droplets. Ricinus communis agglutinin 1 was toxic and significantly reduced cell survival. In conclusion, DBA was the most effective inducer of ossification and chondrification. Wheat germ agglutinin induced adipogenesis instead. These assays showed that lectins play important roles in limb bud development.  相似文献   

10.
Self-renewal, differentiation, and tumorigenicity characterize cancer stem cells (CSCs), which are rare and maintained by specific cell fate regulators. CSCs are isolated from glioblastoma multiforme (GBM) and may be responsible for the lethality of incurable brain tumors. Brain CSCs may arise from the transformation of undifferentiated, nestin-positive neural stem or progenitor cells and GFAP-expressing astrocytes. Here, we report a role of Nanog in the genesis of cancer stem-like cells. Using primary murine p53-knockout astrocytes (p53−/− astrocytes), we provide evidence that enforced Nanog expression can increase the cellular growth rate and transform phenotypes in vitro and in vivo. In addition, Nanog drives p53−/− astrocytes toward a dedifferentiated, CSC-like phenotype with characteristic neural stem cell/progenitor marker expression, neurosphere formation, self-renewal activity, and tumor development. These findings suggest that Nanog promotes dedifferentiation of p53-deficient mouse astrocytes into cancer stem-like cells by changing the cell fate and transforming cell properties.  相似文献   

11.
12.
Villalba  J. M.  Navarro  F.  Roldán  J. M.  González-Reyes  J. A.  Navas  P. 《Protoplasma》1994,178(3-4):87-96
Summary Expression of various sugar residues on the plasma membrane of frog (Rana perezi) epidermal cells at different stages of differentiation has been monitored with the use of a battery of HRP-conjugated lectins. In paraffin-embedded tissue, mannose residues (stained by Concanavalin A) were detected at the keratinocyte cell surface in all epidermal strata. However,Lens culinaris agglutinin (LCA), also specific for mannose, specifically stained the plasma membrane of cells from the stratum germinativum. Expression of N-acetyl-glucosamine (GlcNAc), labelled with wheat germ agglutinin (WGA), was maximum at the cell surface of basal cells and progressively decreased through the stratum spinosum. Galactose (Gal) and N-acetyl-galactosamine (GalNAc) residues, labelled withGriffonia simplicifolia I (GS I) andGlycine max (SBA) agglutinins, respectively, were expressed according to the degree of differentiation in amphibian epidermal cells. Sialic acid-containing glycoproteins, labelled withLimax flavus agglutinin (LFA), were found in the outermost plasma membrane of the replacement cell layer and stratum corneum. Glycoproteins responsible for the observed lectin-binding patterns have been identified by staining on nitrocellulose filters after electrophoresis of solubilized plasma membrane fractions and Western blotting. Changes at the level of glycosylation of plasma membrane glycoproteins as epidermal cells differentiate are discussed on the basis of a progressive addition of Gal residues. Integral membrane proteins have been solubilized with the non-denaturing detergent CHAPS and glycoproteins containing terminal Gal residues, that are expressed according to the degree of differentiation in frog epidermis, have been partially purified by affinity chromatography on a GS I-Sepharose 4 B column. The purified fraction was composed by four acidic glycoproteins with isoelectric points between 4.6 and 5.2 and, in SDS-gels gave five major protein bands with approximate molecular weights of 148, 140, 102, 60, and 52 kDa in SDS-gels. The 102 and 52 kDa bands correspond to the a and subunits of amphibian epidermal Na+,K+-ATPase as demonstrated by specific staining with a polyclonal antibody against the catalytic subunit of pig kidney proton pump and staining with lectins GS I, GS II, and WGA. Possible relationships between higher molecular weight proteins and the constituents of intramembranous particles from the outermost plasma membranes of the replacement cell layer and the stratum corneum are also discussed.Abbreviations BSA bovine serum albumin - CHAPS (3-[(cholamidopropyl) dimethyl-ammonio] 1-propanesulfonate) - Con A Canavalia ensiformis agglutinin - DTT dithiothreitol - Gal galactose - GalNAc N-acetyl-D-galactosamine - GlcNAc N-acetyl-D-glucosamine - GS I Griffonia simplicifolia agglutinin I - GS II Griffonia simplicifolia agglutinin II - HRP horseradish peroxidase - LFA Limax flavus agglutinin - LCA Lens culinaris agglutinin - NDPAGIF non-denaturing polyacrylamide gel isoelectric focusing - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase - PBS phosphate buffered saline - PMSF phenyl methyl sulphonyl fluoride - RCL replacement cell layer - SBA soybean agglutinin (Glycine max) - SB stratum basal - SDS sodium dodecyl sulphate - SG stratum granulosum - SS stratum spinosum - UEA I Ulex europaeus agglutinin I - WGA wheat germ (Triticum vulgaris) agglutinin  相似文献   

13.
Yanagisawa M  Yu RK 《Glycobiology》2007,17(7):57R-74R
The mammalian central nervous system is organized by a variety of cells such as neurons and glial cells. These cells are generated from a common progenitor, the neural stem cell (NSC). NSCs are defined as undifferentiated neural cells that are characterized by their high proliferative potential while retaining the capacity for self-renewal and multipotency. Glycoconjugates carrying carbohydrate antigens, including glycoproteins, glycolipids, and proteoglycans, are primarily localized on the plasma-membrane surface of cells and serve as excellent biomarkers at various stages of cellular differentiation. Moreover, they also play important functional roles in determining cell fate such as self-renewal, proliferation, and differentiation. In the present review, we discuss the expression pattern and possible functions of glycoconjugates and carbohydrate antigens in NSCs, with an emphasis on stage-specific embryonic antigen-1, human natural killer antigen-1, polysialic acid-neural cell-adhesion molecule, prominin-1, gp130, chondroitin sulfate proteoglycans, heparan sulfate proteoglycans, cystatin C, galectin-1, glycolipids, and Notch.  相似文献   

14.
Disentangling the complex interactions that govern stem cell fate choices of self-renewal, differentiation, or death presents a formidable challenge. Image-based phenotype-driven screening meets this challenge by providing means for rapid testing of many small molecules simultaneously. Pluripotent embryonal carcinoma (EC) cells offer a convenient substitute for embryonic stem (ES) cells in such screens because they are simpler to maintain and control. The authors developed an image-based screening assay to identify compounds that affect survival or differentiation of the human EC stem cell line NTERA2 by measuring the effect on cell number and the proportion of cells expressing a pluripotency-associated marker SSEA3. A pilot screen of 80 kinase inhibitors identified several compounds that improved cell survival or induced differentiation. The survival compounds Y-27632, HA-1077, and H-8 all strongly inhibit the kinases ROCK and PRK2, highlighting the important role of these kinases in EC cell survival. Two molecules, GF109203x and rottlerin, induced EC differentiation. The effects of rottlerin were also investigated in human ES cells. Rottlerin inhibited the self-renewal ability of ES cells, caused the cell cycle arrest, and repressed the expression of pluripotency-associated genes.  相似文献   

15.
Placenta-derived stem cells (PDSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal and differentiation and their immunomodulatory properties. Although many studies have characterized various PDSCs biologically, the properties of the self-renewal and differentiation potential among PDSCs have not yet been directly compared. We consider the characterization of chorionic-plate-derived mesenchymal stem cells (CP-MSCs) and Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) among various PDSCs and the assessment of their differentiation potential to be important for future studies into the applicability and effectiveness of PDSCs in cell therapy. In the present study, the capacities for self-renewal and multipotent differentiation of CP-MSCs and WJ-MSC isolated from normal term placentas were compared. CP-MSCs and WJ-MSCs expressed mRNAs for the pluripotent stem cell markers Oct-4, Nanog, and Sox-2. Additionally, HLA-G for immunomodulatory effects was found to be expressed at both the mRNA and protein levels in both cell types. The CP-MSCs and WJ-MSCs also had the capacities to differentiate into cells of mesodermal (adipogenic and osteogenic) and endodermal (hepatogenic) lineages. Expression of adipogenesis-related genes was higher in CP-MSCs than in WJ-MSCs, whereas WJ-MSCs accumulated more mineralized matrix than CP-MSCs. The WJ-MSCs expressed more of CYP3A4 mRNA, a marker for mature hepatocytes, than CP-MSCs. Thus, we propose that CP-MSCs and WJ-MSCs are useful sources of cells for appropriate clinical applications in the treatment of various degenerative diseases.  相似文献   

16.
Hemopoiesis is a sequence of events initiated by the self-renewal of pluripotent stem cells followed by a series of differentiation steps and completed in the formation of distinct tissue patterns. Differentiation and self-renewal are antagonistic processes. A mechanism that attenuates the differentiation flow is obligatory to prevent the exhaustion of the stem cell pool. We suggest that stromal cells from the bone marrow control stem cell renewal through a mechanism that does not require colony-stimulating factors. The organization of cells within the tissue and their specific localization is suggested to be directed by stromal cell activities other than differentiation inducers. These stromal cell activities restrict differentiation or accumulation of mature cells. They are therefore designated as 'Restrictins'.  相似文献   

17.
18.
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.  相似文献   

19.
Summary In the present study unstimulated and stimulated human blood monocytes, untreated and phorbol ester treated U-937 cells, as well as human peritoneal and alveolar macrophages were studied with respect to their surface membrane properties. Binding of different lectins and electrophoretic patterns of tritium labeled surface glycoproteins were compared. The analysis of surface glycoproteins could be interpreted as evidence for a common origin of the analysed cell populations. Furthermore, banding patterns of glycoproteins might be useful to define certain activation states within monocyte/macrophage differentiation. In contrast, lectin binding pattern did not clearly discriminate macrophage subpopulations.Abbreviations AM alveolar macrophage - BM blood monocyte - PM peritoneal macrophage - PBS phosphate buffered saline - IPA 12-O-tetradecanoylphorbol-13-acetate - Con A Concanavalin A - HPA Helix pomatia agglutinin - LPA Limulus polyphemus agglutinin - PHA Phaseolus vulgaris agglutinin - SBA Soy bean agglutinin - UEA I Ulex europaeus agglutinin I - WGA Wheat-germ agglutinin  相似文献   

20.
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号