首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell reports》2023,42(6):112648
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   

2.
The growth factor GM-CSF has an important role in pulmonary surfactant metabolism and the regulation of antibacterial activities of lung sentinel cells. However, the potential of intra-alveolar GM-CSF to augment lung protective immunity against inhaled bacterial pathogens has not been defined in preclinical infection models. We hypothesized that transient overexpression of GM-CSF in the lungs of mice by adenoviral gene transfer (Ad-GM-CSF) would protect mice from subsequent lethal pneumococcal pneumonia. Our data show that intra-alveolar delivery of Ad-GM-CSF led to sustained increased pSTAT5 expression and PU.1 protein expression in alveolar macrophages during a 28-d observation period. Pulmonary Ad-GM-CSF delivery 2-4 wk prior to infection of mice with Streptococcus pneumoniae significantly reduced mortality rates relative to control vector-treated mice. This increased survival was accompanied by increased inducible NO synthase expression, antibacterial activity, and a significant reduction in caspase-3-dependent apoptosis and secondary necrosis of lung sentinel cells. Importantly, therapeutic treatment of mice with rGM-CSF improved lung protective immunity and accelerated bacterial clearance after pneumococcal challenge. We conclude that prophylactic delivery of GM-CSF triggers long-lasting immunostimulatory effects in the lung in vivo and rescues mice from lethal pneumococcal pneumonia by improving antibacterial immunity. These data support use of novel antibiotic-independent immunostimulatory therapies to protect patients against bacterial pneumonias.  相似文献   

3.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

4.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

5.
Yokochi T 《Innate immunity》2012,18(2):364-370
We have recently established a new experimental murine model for lipopolysaccharide (LPS)-mediated lethal shock with lung-specific injury. Severe lung injury is induced by administration of LPS into α-galactosylceramide (α-GalCer)-sensitized mice; the mice died with acute lung injury and respiratory distress within 24 h. α-GalCer activates natural killer T (NKT) cells in the lungs and liver, and induces the production of interferon (IFN)-γ. However, IFN-γ signaling is only triggered in the lungs and makes them susceptible to LPS. On the other hand, IFN-γ signaling is inhibited in liver and results in few hepatic lesions. Unlike liver NKT cells, lung NKT cells fail to produce interleukin (IL)-4, which down-regulates the IFN-γ signaling, in response to α-GalCer. The differential cytokine profile between lung and liver NKT cells may lead to organ-specific lung lesions. The experimental system using α-GalCer sensitization could be a useful experimental model for clinical endotoxic or septic shock as it presents respiratory failure, a typical manifestation in severe septic patients. In this review, key evidence and the introducuction of the detailed mechanism of LPS-mediated lung-specific injury in α-GalCer-sensitized mice is provided. In particular, the molecular background of organ-specific development of lung injury in the model is focused on.  相似文献   

6.

Background

Experimental models of pneumonia with penicillin non-susceptible Streptococcus pneumoniae (PNSSP) are hard to reproduce because the majority of strains with clinical relevance (like serotypes 6B, 9 V and 19 F) have low murine virulence. By optimization of culture and inoculum conditions of PNSSP (using porcine mucin), our aim was to develop a suitable, reliable and reproducible pneumonia mouse model for anti-infective pharmacology research.

Results

Seven PNSSP strains, including serotypes 6B, 9 V, 14 and 19 F were included. Strain INS-E611 displayed the highest murine virulence and was chosen to validate the lung model. Nose-instilled pneumococci grew between 2.1 and 2.5 log10 CFU/g of lung in 24 hours when an optimized culture of bacterial cells was used, but animals were all alive and recovered of infection after 36 h. In contrast, inoculum supplementation with mucin led to 100% mortality related to a successful lung infection confirmed by histopathology. These findings were reproduced with all seven PNSSP strains in neutropenic mice. Immunocompetent animals cleared all strains spontaneously.

Conclusions

This pneumonia model produces a progressive and uniformly fatal lung infection with diverse serotypes of PNSSP independently of their intrinsic murine virulence.  相似文献   

7.
8.
9.
Toll-like receptors (TLR) are crucial pattern recognition receptors in innate immunity. The importance of TLR2 in host defense against Gram-positive bacteria has been suggested by the fact that this receptor recognizes major Gram-positive cell wall components, such as peptidoglycan and lipoteichoic acid. To determine the role of TLR2 in pulmonary Gram-positive infection, we first established that TLR2 is indispensable for alveolar macrophage responsiveness toward Streptococcus pneumoniae. Nonetheless, TLR2 gene-deficient mice intranasally inoculated with S. pneumoniae at doses varying from nonlethal (with complete clearance of the infection) to lethal displayed only a modestly reduced inflammatory response in their lungs and an unaltered antibacterial defense when compared with normal wild-type mice. These data suggest that TLR2 plays a limited role in the innate immune response to pneumococcal pneumonia, and that additional pattern recognition receptors likely are involved in host defense against this common respiratory pathogen.  相似文献   

10.
Asthma is an allergic disease characterized by chronic airway eosinophilia and pulmonary infiltration of lymphocytes, particularly of the Th2 subtype, macrophages and mast cells. Previous studies have shown a pivotal role for sphingosine kinase (SphK) on various proinflammatory cells, such as lymphocyte and eosinophil migration and mast cell degranulation. We therefore examined the roles of SphK in a murine model of allergic asthma. In mice previously sensitized to OVA, i.p. administration of N,N-dimethylsphingosine (DMS), a potent SphK inhibitor, significantly reduced the total inflammatory cell infiltrate and eosinophilia and the IL-4, IL-5, and eotaxin levels in bronchoalveolar lavage fluid in response to inhaled OVA challenge. In addition, DMS significantly suppressed OVA-induced inflammatory infiltrates and mucus production in the lungs, and airway hyperresponsiveness to methacholine in a dose-dependent manner. OVA-induced lymphocyte proliferation and IL-4 and IL-5 secretion were reduced in thoracic lymph node cultures from DMS-treated mice. Moreover, similar reduction in inflammatory infiltrates, bronchoalveolar lavage, IL-4, IL-5, eotaxin, and serum OVA-specific IgE levels was observed in mice with SphK1 knock-down via small interfering RNA approach. Together, these data demonstrate the therapeutic potential of SphK modulation in allergic airways disease.  相似文献   

11.
The mechanism via which pneumolysin (PLY), a toxin and major virulence factor of the bacterium Streptococcus pneumoniae, binds to its putative receptor, cholesterol, is still poorly understood. We present results from a series of biophysical studies that shed light on the interaction of PLY with cholesterol in solution and in lipid bilayers. PLY lyses cells whose walls contain cholesterol. Using standard hemolytic assays we have demonstrated that the hemolytic activity of PLY is inhibited by cholesterol, partially by ergosterol but not by lanosterol and that the functional stoichiometry of the cholesterol-PLY complex is 1:1. Tryptophan (Trp) fluorescence data recorded during PLY-cholesterol titration studies confirm this ratio, reveal a significant blue shift in the Trp fluorescence peak with increasing cholesterol concentrations indicative of increasing nonpolarity in the Trp environment, consistent with cholesterol binding by the tryptophans, and provide a measure of the affinity of cholesterol binding: K(d) = 400 +/- 100 nM. Finally, we have performed specular neutron reflectivity studies to observe the effect of PLY upon lipid bilayer structure.  相似文献   

12.
In this case report we describe the development of a pyopneumopericarditis secondary to pneumonia, a complication that is rarely seen nowadays. (Neth Heart J 2009:17:393–5.)  相似文献   

13.
Gram-positive sepsis is a major disease problem. However, the contribution of various immune cell types to pathogenesis remains unclear. By infecting scid and wild type BALB/c mice with Streptococcus pneumoniae we have found a situation in which natural killer (NK) cells can play a detrimental role in the response to infection. scid mice were found to be significantly more susceptible to local and systemic pneumococcal infection than controls; they had significantly higher bacterial loads, elevated inflammatory responses and more widespread lung pathology. Interestingly, depletion of NK cells in scid mice resulted in significantly lower bacteraemia and inflammatory cytokine production. Infection with pneumococci deficient in pneumolysin revealed the toxin was involved in cytokine production. Overall results indicate that elevated NK cell activity during pneumococcal pneumonia amplifies pulmonary and systemic inflammation, increases bacteraemia and results in poor outcome.  相似文献   

14.
Streptococcus pneumoniae or pneumococcus (PN) is a major causative agent of bacterial meningitis with high mortality in young infants and elderly people worldwide. The mechanism underlying PN crossing of the blood brain barrier (BBB) and specifically, the role of non-endothelial cells of the neurovascular unit that control the BBB function, remains poorly understood. Here, we show that the astroglial connexin 43 (aCx43), a major gap junctional component expressed in astrocytes, plays a predominant role during PN meningitis. Following intravenous PN challenge, mice deficient for aCx43 developed milder symptoms and showed severely reduced bacterial counts in the brain. Immunofluorescence analysis of brain slices indicated that PN induces the aCx43–dependent destruction of the network of glial fibrillary acid protein (GFAP), an intermediate filament protein specifically expressed in astrocytes and up-regulated in response to brain injury. PN also induced nuclear shrinkage in astrocytes associated with the loss of BBB integrity, bacterial translocation across endothelial vessels and replication in the brain cortex. We found that aCx4-dependent astrocyte damages could be recapitulated using in vitro cultured cells upon challenge with wild-type PN but not with a ply mutant deficient for the pore-forming toxin pneumolysin (Ply). Consistently, we showed that purified Ply requires Cx43 to promote host cell plasma membrane permeabilization in a process involving the Cx43-dependent release of extracellular ATP and prolonged increase of cytosolic Ca2+ in host cells. These results point to a critical role for astrocytes during PN meningitis and suggest that the cytolytic activity of the major virulence factor Ply at concentrations relevant to bacterial infection requires co-opting of connexin plasma membrane channels.  相似文献   

15.
Mortality after influenza is often due to secondary bacterial pneumonia with Streptococcus pneumoniae, particularly in the elderly. The reasons for the high fatality rate seen with this disease are unclear. To further characterize the pathogenesis of pneumonia after influenza in a mouse model, we examined the pathology and immunology that leads to fatal infection. Influenza-infected mice were either euthanized 24 h after secondary infection with S. pneumoniae for determination of pathology, bacterial cultures, and levels of immune effectors or were followed by use of a live imaging system for development of pneumonia. Influenza-infected mice challenged with each of 3 serotypes of pneumococcus developed a severe, necrotic pneumonia and met endpoints for euthanasia in 24 to 60 h. Strikingly elevated levels of both pro- and anti-inflammatory molecules including interleukins 6 and 10, macrophage inflammatory protein 1alpha, and chemokine KC were present in the blood. High levels of these cytokines and chemokines as well as tumor necrosis factor alpha, interleukin 1beta, and heme oxygenase 1 were present in the lungs, accompanied by a massive influx of neutrophils. Mortality correlated with the development of pneumonia and lung inflammation but not with bacteremia. This model has the potential to help us understand the pathogenesis of severe lung infections.  相似文献   

16.
Legionella pneumophila is a major cause of life-threatening pneumonia, which is characterized by a high incidence of acute lung injury and resultant severe hypoxemia. Mechanical ventilation using high oxygen concentrations is often required in the treatment of patients with L. pneumophila pneumonia. Unfortunately, oxygen itself may propagate various forms of tissue damage, including acute lung injury. The effect of hyperoxia as a cofactor in the course of L. pneumophila pneumonia is poorly understood. In this study, we show that exposure to hyperoxic conditions during the evolution of pneumonia results in a marked increase in lethality in mice with Legionella pneumonia. The enhanced lethality was associated with an increase in lung permeability, but not changes in either lung bacterial burden or leukocyte accumulation. Interestingly, accelerated apoptosis as evidenced by assessment of histone-DNA fragments and caspase-3 activity were noted in the infected lungs of mice exposed to hyperoxia. TUNEL staining of infected lung sections demonstrated increased apoptosis in hyperoxic mice, predominantly in macrophages and alveolar epithelial cells. In vitro exposure of primary murine alveolar epithelial cells to Legionella in conjunction with hyperoxia accelerated apoptosis and loss of barrier function. Fas-deficient mice demonstrated partial resistance to the lethal effects of Legionella infection induced by hyperoxia, which was associated with attenuated apoptosis in the lung. These results demonstrate that hyperoxia serves as an important cofactor for the development of acute lung injury and lethality in L. pneumophila pneumonia. Exaggerated apoptosis, in part through Fas-mediated signaling, may accelerate hyperoxia-induced acute lung injury in Legionella pneumonia.  相似文献   

17.
Oxidative damage to the vascular endothelial cells may play a crucial role in mediating glucose-induced cellular dysfunction in chronic diabetic complications. The present study was aimed at elucidating the role of glucose-induced alteration of highly inducible heme oxygenase (HO) in mediating oxidative stress in the vascular endothelial cells. We have also investigated the interaction between HO and the nitric oxide (NO) system, and its possible role in alteration of other vasoactive factors. Human umbilical vein endothelial cells (HUVECs) were exposed to low (5mmol/l) and high (25mmol/l) glucose levels. In order to determine the role of HO in endothelial dysfunction and to elucidate a possible interaction between the HO and NO systems, cells were exposed to HO inducer (hemin, 10 micromol/l), HO antagonist (SnPPIX, 10 micromol/l), and NO synthase blocker (L-NAME, 200 micromol/l) with or without NO donor (arginine, 1 mmol/l). mRNA expression of HO and NO isoforms was measured by real time RT-PCR. HO activity was measured by bilirubin production and cellular oxidative stress was assessed by 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine staining. We also determined the expression of vasoactive factors, endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF). In the endothelial cells, glucose caused upregulation of HO-1 expression and increased HO activity. A co-stimulatory relationship between HO and NO was observed. Increased HO activity also associated with oxidative DNA and protein damage in the endothelial cells. Furthermore, increased HO activity augmented mRNA expression of vasoactive factors, ET-1 and VEGF. These data suggest that HO by itself and via elaboration of other vasoactive factors may cause endothelial injury and functional alteration. These findings are of importance in the context of chronic diabetic complications.  相似文献   

18.
Pneumococcal pneumonia is a leading cause of death and a major source of human morbidity. The initial immune response plays a central role in determining the course and outcome of pneumococcal disease. We combine bacterial titer measurements from mice infected with Streptococcus pneumoniae with mathematical modeling to investigate the coordination of immune responses and the effects of initial inoculum on outcome. To evaluate the contributions of individual components, we systematically build a mathematical model from three subsystems that describe the succession of defensive cells in the lung: resident alveolar macrophages, neutrophils and monocyte-derived macrophages. The alveolar macrophage response, which can be modeled by a single differential equation, can by itself rapidly clear small initial numbers of pneumococci. Extending the model to include the neutrophil response required additional equations for recruitment cytokines and host cell status and damage. With these dynamics, two outcomes can be predicted: bacterial clearance or sustained bacterial growth. Finally, a model including monocyte-derived macrophage recruitment by neutrophils suggests that sustained bacterial growth is possible even in their presence. Our model quantifies the contributions of cytotoxicity and immune-mediated damage in pneumococcal pathogenesis.  相似文献   

19.
20.
The inhibition of the biological activity of IL-1 by recombinant human IL-1 receptor antagonist (IL-1ra) has been investigated in several, controlled clinical trials. Encouraging results have been reported, in particular in patients with rheumatoid arthritis. In the present study, we investigated the influence of treatment of wild type mice with IL-1ra, which resulted in an incomplete and transient inhibition of IL-1 activity. Treatment with recombinant human IL-1ra resulted in an enhanced bacterial outgrowth in the lungs of BALB/c and C57BL/6 mice early after induction of pneumococcal pneumonia, without influencing survival or the pulmonary inflammatory response. The effect of IL-1ra on the host response to S. pneumoniae pneumonia is modest and transient. The present data, together with the findings in IL-1R*/* mice in earlier work, suggest that IL-1 occupies a role in the pulmonary immune response to S. pneumoniae that is substantially less prominent than that of TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号