首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.  相似文献   

2.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

3.
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins.  相似文献   

4.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

5.
Water relations and leaf expansion: importance of time scale   总被引:12,自引:0,他引:12  
The role of leaf water relations in controlling cell expansion in leaves of water-stressed maize and barley depends on time scale. Sudden changes in leaf water status, induced by sudden changes in humidity, light and soil salinity, greatly affect leaf elongation rate, but often only transiently. With sufficiently large changes in salinity, leaf elongation rates are persistently reduced. When plants are kept fully turgid throughout such sudden environmental changes, by placing their roots in a pressure chamber and raising the pressure so that the leaf xylem sap is maintained at atmospheric pressure, both the transient and persistent changes in leaf elongation rate disappear. All these responses show that water relations are responsible for the sudden changes in leaf elongation rate resulting from sudden changes in water stress and putative root signals play no part. However, at a time scale of days, pressurization fails to maintain high rates of leaf elongation of plants in either saline or drying soil, indicating that root signals are overriding water relations effects. In both saline and drying soil, pressurization does raise the growth rate during the light period, but a subsequent decrease during the dark results in no net effect on leaf growth over a 24 h period. When transpirational demand is very high, however, growth-promoting effects of pressurization during the light period outweigh any reductions in the dark, resulting in a net increase in growth of pressurized plants over 24 h. Thus leaf water status can limit leaf expansion rates during periods of high transpiration despite the control exercised by hormonal effects on a 24 h basis.  相似文献   

6.
In perennial plants, freeze-thaw cycles during the winter months can induce the formation of air bubbles in xylem vessels, leading to changes in their hydraulic conductivity. Refilling of embolized xylem vessels requires an osmotic force that is created by the accumulation of soluble sugars in the vessels. Low water potential leads to water movement from the parenchyma cells into the xylem vessels. The water flux gives rise to a positive pressure essential for the recovery of xylem hydraulic conductivity. We investigated the possible role of plasma membrane aquaporins in winter embolism recovery in walnut (Juglans regia). First, we established that xylem parenchyma starch is converted to sucrose in the winter months. Then, from a xylem-derived cDNA library, we isolated two PIP2 aquaporin genes (JrPIP2,1 and JrPIP2,2) that encode nearly identical proteins. The water channel activity of the JrPIP2,1 protein was demonstrated by its expression in Xenopus laevis oocytes. The expression of the two PIP2 isoforms was investigated throughout the autumn-winter period. In the winter period, high levels of PIP2 mRNA and corresponding protein occurred simultaneously with the rise in sucrose. Furthermore, immunolocalization studies in the winter period show that PIP2 aquaporins were mainly localized in vessel-associated cells, which play a major role in controlling solute flux between parenchyma cells and xylem vessels. Taken together, our data suggest that PIP2 aquaporins could play a role in water transport between xylem parenchyma cells and embolized vessels.  相似文献   

7.
Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins(AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine(COR), enhanced maize(Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5(ZmPIP2;5).In vivo and in vitro experiments indicated that COR also directly acts ...  相似文献   

8.
Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black mMexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (Pf) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.Key words: aquaporin, suspension cultured cells, hetero-oligomerization, maize, plasma membrane intrinsic protein, protein interaction, water movement  相似文献   

9.
水分亏缺下玉米根系ZmPIP1亚族基因的表达   总被引:10,自引:0,他引:10  
在PEG-6000胁迫条件下,以微管蛋白基因为内参基因、水通道蛋白基因ZmPIP1-1和ZmPIP1-2为检测基因,采用半定量逆转录聚合酶链式反应(RT-PCR)体系检测它们在玉米根系中的表达情况。实验结果是:胁迫条件下,ZmPIP1-1的表达量在杂交F,代‘户单4号’(抗旱)和母本‘天四’(抗旱)根系中增多,它的表达量与品种的抗旱性呈正相关,并且胁迫不同时间段它的表达量有差异;而ZmPIP1-2在3个玉米品种的不同水分处理条件下,表达量均没有明显变化。这提示,水分胁迫条件下根系中某些种类的水通道蛋白基因的表达量增多,并且与品种的抗旱性有关;而另一些水通道蛋白基因的表达不受水分亏缺的影响。  相似文献   

10.
J. A. C. Smith  U. Lüttge 《Planta》1985,163(2):272-282
A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.Abbreviation and symbols CAM Crassulacean acid metabolism - P turgor pressure - osmotic pressure - water potential Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   

11.
Compensation by dark-period uptake of NH(4)(+) and NO(3)(-) in the grasses Phleum pratense L. and Festuca pratensis Huds. following N deprivation during the preceding light period was investigated in flowing solution culture under an artificial 10/14 h light/dark cycle. N was supplied as either NO(3)(-), NH(4)(+) or NH(4)NO(3) at 20+/-5 mmol m(-3), available continuously or only during the dark period, for 5-10 d. Intermittent N supply did not affect total daily N uptake, growth rate or net partitioning of dry matter. Net uptake and influx of NO(3)(-) varied similarly throughout the diurnal cycle when NO(3)(-) was supplied continuously, with a marginal contribution by NO(3)(-) efflux. Influx was significantly higher and efflux slightly higher following interruption of NO(3)(-) supply during the light period. Nitrate accounted for 80% of N in xylem exudate except between hours 6-9 of the light period when the amino acid concentration increased 3-fold, primarily as glutamine. Diurnal variation in relative NO(3)(-) uptake exhibited five phases of constant acceleration/deceleration, described reasonably well assuming NO(3)(-) influx was subject to metabolic co-regulation by NO(3)(-) and amino acid levels in the cytoplasmic compartment of the roots. Accordingly, influx is determined by variation in root NO(3)(-) levels throughout the dark period and the first half of the light period, but is down-regulated by increased amino acid levels during the second half of the light period. The sharp light/dark transitions affect transpiration rate and hence xylem N flux which, in turn, affect NO(3)(-) levels in the cytoplasmic compartment of the roots and the rate of NO(3)(-) assimilation in the shoot.  相似文献   

12.
This study examined the potential role of restricted phloem export, or import of substances from the roots in the leaf growth response to root hypoxia. In addition, the effects of root hypoxia on abscisic acid (ABA) and zeatin riboside (ZR) levels were measured and their effects on in vitro growth determined. Imposition of root hypoxia in the dark when transpirational water flux was minimal delayed the reduction in leaf growth until the following light period. Restriction of phloem transport by stem girdling did not eliminate the hypoxia-induced reduction in leaf growth. In vitro growth of leaf discs was inhibited in the presence of xylem sap collected from hypoxic roots, and also by millimolar ABA. Disc growth was promoted by sap from aerated roots and by 0.1 micromolar ZR. The flux of both ABA and ZR was reduced in xylem sap from hypoxic roots. Leaf ABA transiently increased twofold after 24 hours of hypoxia exposure but there were no changes in leaf cytokinin levels.  相似文献   

13.
Water movement across root tissues occurs by parallel apoplastic, symplastic, and transcellular pathways that the plant can control to a certain extent. Because water channels or aquaporins (AQPs) play an important role in regulating water flow, studies on AQP mRNA and protein expression in different root tissues are essential. Here, we quantified and localized the expression of Zea mays plasma membrane AQPs (ZmPIPs) in primary root tip using in situ and quantitative RT-PCR and immunodetection approaches. All ZmPIP genes except ZmPIP2;7 were expressed in primary roots. Expression was found to be dependent on the developmental stage of the root, with, in general, an increase in expression towards the elongation and mature zones. Two genes, ZmPIP1;5 and ZmPIP2;5, showed the greatest increase in expression (up to 11- and 17-fold, respectively) in the mature zone, where they accounted for 50% of the total expressed ZmPIPs. The immunocytochemical localization of ZmPIP2;1 and ZmPIP2;5 in the exodermis and endodermis indicated that they are involved in root radial water movement. In addition, we detected a polar localization of ZmPIP2;5 to the external periclinal side of epidermal cells in root apices, suggesting an important role in water uptake from the root surface. Finally, protoplast swelling assays showed that root cells display a variable, but globally low, osmotic water permeability coefficient (P f < 10 μm/s). However, the presence of a population of cells with a higher P f (up to 26 μm/s) in mature zone of the root might be correlated with the increased expression of several ZmPIP genes.  相似文献   

14.
Differential responses of maize MIP genes to salt stress and ABA   总被引:15,自引:0,他引:15  
Salt stress is known to reduce root hydraulic conductivity and growth. To examine a concomitant regulation of aquaporins, the expression of the maize MIP gene family in response to NaCl was analysed by DNA array hybridization. Plants responded differentially to 100 versus 200 mM NaCl treatments. Leaf water content was reduced rapidly and persistently after the application of 200 mM NaCl in contrast to 100 mM NaCl. Endogenous ABA strongly accumulated in roots after 2 h; it remained at a highly elevated level for 48 h after the addition of 200 mM NaCl, but rapidly declined in plants treated with 100 mM NaCl, indicating an early recovery from water deficit. Interestingly, 2 h after the addition of 100 mM NaCl, when maize regained the osmotic potential allowing water uptake, three highly expressed, specific isoforms ZmPIP1;1, ZmPIP1;5, and ZmPIP2;4 were transiently induced. They were preferentially transcribed in the outer root tissue suggesting a role in cellular water transport. None of the ZmTIP genes was altered. By contrast, after the addition of 200 mM NaCl these responses were missing. Instead, multiple ZmPIP and ZmTIP genes were repressed by 200 mM NaCl after 24 h. After 48 h, deregulations were overridden in both cases indicating homeostasis. ABA (1 muM) exogenously applied to the roots transiently induced ZmPIP2;4 similar to 100 mM NaCl as well as ZmPIP1;2. Thus, the early induction of ZmPIP2;4 by NaCl may be mediated by ABA. Previously, an increase in root hydraulic conductivity had been observed upon ABA application. By contrast, 100 muM ABA led to a complete, possibly non-specific repression of all detected ZmPIP and ZmTIP genes after 24 h.  相似文献   

15.
16.
Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4–6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism.  相似文献   

17.
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (Pf) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3 , ZmPIP2;1 , ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the Pf. Interestingly, we found that the Pf were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell Pf.  相似文献   

18.
19.
Plant plasma membrane intrinsic proteins (PIPs) cluster in two evolutionary subgroups, PIP1 and PIP2, with different aquaporin activities when expressed in Xenopus oocytes. Maize ZmPIP1;1 and ZmPIP1;2 do not increase the osmotic water permeability coefficient (Pf), whereas ZmPIP2;1, ZmPIP2;4, and ZmPIP2;5 do. Here, we show that coexpression of the nonfunctional ZmPIP1;2 and the functional ZmPIP2;1, ZmPIP2;4, or ZmPIP2;5 resulted in an increase in Pf that was dependent on the amount of injected ZmPIP1;2 complementary RNA. Confocal analysis of oocytes expressing ZmPIP1;2-green fluorescent protein (GFP) alone or ZmPIP1;2-GFP plus ZmPIP2;5 showed that the amount of ZmPIP1;2-GFP present in the plasma membrane was significantly greater in coexpressing cells. Nickel affinity chromatography purification of ZmPIP2;1 fused to a His tag coeluted with ZmPIP1;2-GFP demonstrated physical interaction and heteromerization of both isoforms. Interestingly, coexpression of ZmPIP1;1 and ZmPIP2;5 did not result in a greater increase in Pf than did the expression of ZmPIP2;5 alone, but coexpression of the ZmPIP1;1 and ZmPIP1;2 isoforms induced a Pf increase, indicating that PIP1 isoform heteromerization is required for both of them to act as functional water channels. Mutational analysis demonstrated the important role of the C-terminal part of loop E in PIP interaction and water channel activity induction. This study has revealed a new mechanism of plant aquaporin regulation that might be important in plant water relations.  相似文献   

20.
Calcium in Xylem Sap and the Regulation of its Delivery to the Shoot   总被引:7,自引:2,他引:5  
Amounts of total and free calcium in root and shoot xylem sapwere quantified for a number of species grown in comparableenvironments and in a rooting medium not deficient in calcium.The potential for the shoot to sequester calcium was also examined,along with the ability for ABA to regulate calcium flux to theleaf. Xylem sap calcium showed considerable interspecific and diurnalvariation, even though the plants were grown with similar rhizosphericcalcium concentrations. The potential for the shoot to sequesterxylem sap calcium was also highly variable between species andimplied an ability, at least in some species, to regulate thecalcium reaching the shoot in the transpiration stream. Long distance transport of calcium in the xylem was not primarilyby mass flow, because neither calcium uptake nor distributionwere closely related to water uptake or transpiration. The diurnalchanges in xylem sap total ion concentration appeared to benegatively correlated with transpiration while, in contrast,the calcium ion concentration showed two peaks, one occurringin the dark and the other in the light period. The application of ABA to roots caused an increase in the rateof exudation from the xylem of detopped well-watered plants.These experiments suggest that changes in root water relationsdriven by ionic fluxes were the likely cause for enhanced sapexudation from ABA-treated roots. The steady-state concentrationof calcium in the xylem sap was unaffected by ABA when exudationrate increased and, consequently, the flux of calcium must alsohave increased. Key words: Abscisic acid, calcium, xylem sap, ionic fluxes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号