首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the immunostimulatory activity of the medicinal plant Panax quinquefolius L. (North American ginseng). Rat alveolar macrophages were treated with different extracts from 4-year old roots, and tumour necrosis factor alpha (TNF) production was used as a measure of immunostimulatory activity. Aqueous extracts of P. quinquefolius root (1-100 microg/ml) were found to significantly stimulate alveolar macrophage TNF release. Both a P. quinquefolius methanol extract containing ginsenosides (but no polysaccharides), and pure ginsenoside-Rb1, the major ginsenoside present in P. quinquefolius, were found to be inactive as TNF-stimulating agents. Significant TNF-stimulating activity was found in the extractable polysaccharide fraction, which was hydrolyzed and found to contain glucose, galactose, arabinose, rhamnose, and mannose. This represents the first evidence that North American ginseng exerts cytokine-stimulating activity on macrophages.  相似文献   

2.
Localization of antisera to neurofilament antigens derived from rat peripheral nerve was carried out in tissues of rat and human peripheral and central nervous systems by indirect immunofluorescence. Unfixed and chloroform-methanol-fixed frozen sections of tissues were incubated in purified IgG of the experimental rabbit antisera and subsequently exposed to goat anti-rabbit IgG conjugated with fluorescein isothiocyanate. Control studies were conducted on identical tissue preparations incubated in the same concentrations of nonspecific rabbit IgG or in experimental rabbit IgG absorbed with extracts of rat peripheral nerve containing neurofilament antigen. Extensive immunofluorescence was observed in rat and human peripheral and central nervous systems. The distribution and configuration of immunofluorescence corresponded to neurofilament-rich structural components of these tissues. Prominent immunofluorescence was also noted in neuronal cell bodies of spinal sensory ganglia, especially in perikarya of the large neuronal type. Immunofluorescence of the central nervous system was located predominantly in myelinated axons of the white matter in cerebrum, cerebellum, brain stem, and spinal cord. Less intense immunofluorescence was also seen in neuronal perikarya and in short thin linear processes of grey matter.  相似文献   

3.
4.
In order to determine the active ingredients in root extracts of Panax quinquefolius (American ginseng), a gradient HPLC method involving UV photodiode array detection was applied to separate and quantify simultaneously the ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf and Rg1. All ginseng saponins were baseline-resolved under the selected conditions, and the detection limits were 1.0 microg/mL or less. The method has been applied to analyse ginsenosides extracted from American ginseng cultivated in both Wisconsin and Illinois. Ginsenosides Re and Rb1 were the two main ginseng saponins in the root. The amounts of Re in 5- and 7-year Illinois-cultivated samples were greater than those found in ginseng cultivated for 3 or 4 years in Wisconsin, whereas the levels of Rb1 were greater in the younger Wisconsin samples.  相似文献   

5.
ANF-like peptide(s) in the peripheral autonomic nervous system   总被引:7,自引:0,他引:7  
The recent demonstration of the atrial natriuretic factor (ANF) within the brain has been extended in the present study by the additional localization of ANF-like activity in the peripheral nervous structures. Using a sensitive radioimmunoassay, it was possible to detect ANF-like immunoreactive peptide(s) in crude and chromatographically separated extracts of parasympathetic rat ganglia. The partially purified ANF-like peptide exhibited a biological action similar to cardiac ANF. This finding supports a possible involvement of ANF in the regulation of both, central and peripheral neuronal activities.  相似文献   

6.
Ornithine decarboxlyase (ODC) catalyzes the initial step in the bio-synthesis of the polyamines spermidine and spermine, which are key regulators of cell growth, proliferation and differentiation. Intracisternal administration of beta-endorphin (1 microgram) to 6 day-old rats markedly decreased brain, liver, heart and kidney ODC activity. Conversely, subcutaneous administration of beta-endorphin increased ODC activity in the heart and liver. Thus, ODC inhibition in peripheral organs in rat pups given beta-endorphin intracisternally appears to reflect central effects of this neuropeptide. Experiments were also carried out to test whether opioid receptors are involved in these tissue ODC responses. Naloxone prevented the decreases in brain ODC indicating the participation of opioid receptors in that process. In contrast, naloxone did not alter ODC responses in peripheral organs in rat pups given beta-endorphin intracisternally, indicating that these effects are independent of its classical opioid character. These results support the view that endogenous beta-endorphin may play an important role in organogenesis by modulating the growth-related enzyme ODC. The data also suggest that the regulation of peripheral organ development by beta-endorphin may be mediated through the release of growth regulatory substances from the CNS.  相似文献   

7.
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.  相似文献   

8.
This study was undertaken to investigate the developmental expression of osteopontin (OPN) in the rat brainstem and cerebellum by Northern blotting and in situ hybridization. The expression of OPN was noted in the mesencephalic Vth nucleus initially at embryonic day 16 (E16). At E20, the labeling extended into other brainstem nuclei including the cochlear, vestibular, facial motor, and hypoglossal nuclei. During the first week of postnatal life, the OPN signal in the brainstem increased markedly, and by P14, OPN expression was found in functionally diverse areas including motor-related areas, sensory relay nuclei, and the reticular formation. The adult labeling pattern was established in central neurons at this time. These results corresponded well with those from Northern blot analysis. On the basis of morphological and distribution criteria, the OPN signal in several nuclei appeared to be contained exclusively within neuronal soma. OPN expression in neurons occurred during the period of neuronal differentiation and increased with maturation. Our results therefore suggest that OPN contributes to developmental processes, including the differentiation and maturation of specific neuronal populations, in the rat brain.  相似文献   

9.
We report the production of a monoclonal antibody (MAb 526) that recognizes a novel, developmentally regulated nuclear protein expressed in neurons throughout the rat nervous system. Analysis of whole brain and cell nuclear extracts by SDS-PAGE and immunoblotting determined that MAb 526 recognizes a single nuclear protein (np) of apparent molecular weight 42 kD, designated np526, as well as a slightly larger (ca. 44 kD) cytoplasmic protein. Light microscopic immunocytochemistry showed np526 to be present in neurons of all types throughout the central and peripheral nervous systems. Nuclei of both fibrous and protoplasmic astrocytes were also immunoreactive, but oligodendrocyte nuclei were negative. Positive, but highly variable immunocytochemical staining of nonneural cell nuclei in a variety of other tissues was also observed. Electron microscopic (EM) immunocytochemistry using pre-embedding peroxidase methods revealed that np526 is associated with euchromatin or with the edges of condensed chromatin bundles in neurons, indicating that it is likely to be a chromosomal protein. Most interestingly, the expression of np526 was found to be developmentally regulated in brain. Immunocytochemical analysis of the developing cerebral cortex from embryonic day (E) 16 to postnatal day (P) 4 and cerebellum from P4 to P18 revealed that np526 first appears in central neurons following the cessation of mitosis and that the intensity of nuclear staining increases during subsequent neuronal maturation. To our knowledge, np526 is the first presumptive chromosomal protein whose expression has been precisely correlated with the early postmitotic differentiation of mammalian neurons.  相似文献   

10.
Nociceptin/orphanin FQ/(N/OFQ), a novel heptadecapeptide recently isolated from porcine and rat brain, is the endogenous ligand of the N/OFQ peptide receptor (NOP, previously known as ORL-1). In this study we examined the effects of intracerebroventricularly (icv) injected N/OFQ on gastric emptying, gastrointestinal transit, colonic propulsion and gastric acid secretion in rats. N/OFQ (0.01-10 nmol/rat) significantly delayed gastric emptying of a phenol red meal, inhibited transit of a non-absorbable charcoal marker through the small intestine and increased the mean colonic bead expulsion time. These N/OFQ-motor effects were abolished by the NOP receptor selective antagonist [NPhe(1)]N/OFQ(1-13)-NH(2) (50 nmol/rat), but were unaltered by the classical opioid receptor antagonist, naloxone (9.2 micromol/kg). Icv injected N/OFQ (10 nmol/rat) decreased gastric acid secretion in 2-h pylorus ligated rats in a naloxone sensitive manner. [NPhe(1)]N/OFQ(1-13)-NH(2) (100 nmol/rat) icv administered alone stimulated gastric acid secretion. These results indicate that N/OFQ activates via NOP receptor stimulation a central inhibitory pathway modulating gastrointestinal propulsive activity and gastric acid secretion in rats.  相似文献   

11.
The actions of endothelin, an endogenous vasoconstrictor compound with potent effects on various parameters of Ca2+ metabolism in peripheral tissue, were studied in several neuronal preparations. Endothelin, by itself, did not alter resting intracellular free Ca2+ levels or Ca2+ influx in either rat or chicken brain preparations; nor did it affect depolarization (K+) induced changes in these parameters. Endothelin also had no effect on the binding of [3H]-nitrendipine or [125I]-omega-conotoxin to "L " or "N" type channels respectively nor did it induce the release of endogenous acetylcholine from brain slices. The results show that, despite the proposed role of endothelin on voltage sensitive Ca2+ channels in peripheral tissue and despite the existence of endothelin binding sites on both smooth muscle and neurons, endothelin has no measurable effects on Ca2+ metabolism in neural tissue of central origin.  相似文献   

12.
Tyrosine hydroxylase regulation in the central nervous system   总被引:4,自引:0,他引:4  
Tyrosine hydroxylase is considered to be the rate-limiting enzyme in the synthesis of catecholamines in both the central and peripheral nervous system. Increased or decreased neuronal activity, stress, lesions, drug effects, endocrinological manipulations and experimental models of hypertension are associated with alterations in tyrosine hydroxylase activity in the central nervous system. In many of these instances, the changes in the activity of tyrosine hydroxylase in the central nervous system that occur are localized to discrete catecholaminergic pathways and nuclei in the brain. The purpose of this review is to summarize and assess this information and to provide insight into the function of catecholamine systems in the brain and their interactions with other putative neurotransmitter systems.  相似文献   

13.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

14.
Jang S  Ryu JH  Kim DH  Oh S 《Neurochemical research》2004,29(12):2257-2266
Ameliorating effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. Ginseng saponins are transformed by intestinal microflora and the transformants would be absorbed from intestine. In the present study, we have investigated the effects of transformed ginsenoside Rg3, Rh2 and compound K on the modulation of NMDA receptor and GABAA receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using [3H]MK-801 binding, and GABAA receptor bindings were analyzed by using [3H]muscimol and [3H]flunitrazepam binding in rat brain slices. Ginsenoside Rg3, Rh2 and compound K were infused (10 g/10 l/h) into rat brain lateral ventricle for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]MK-801 binding were highly decreased in almost all regions of frontal cortex and hippocampus by ginsenoside Rh2 and compound K. The levels of [3H]muscimol binding were elevated in part of frontal cortex and granule layer of cerebellum by the treatment of ginsenoside Rh2 and compound K. However, the [3H]flunitrazepam binding was not modulated by any tested ginsenosides. Ginsenoside Rh2 and compound K induced the downregulation of the [3H]MK-801 binding as well as upregulation of the and [3H]muscimol binding in a region-specific manner after prolonged infusion into lateral ventricle. However, ginsenoside Rg3 did not show the significant changes of ligand bindings. In addition, ginsenoside Rh2 decreased the expression of nNOS in the hippocampus although Rg3 decreased the expression in the cortex. These results suggest that biotransformed ginsenoside Rh2 and compound K could play an important role in the biological activities in the central nervous systems and neurodegenerative disease.  相似文献   

15.
K Raese  D Albeck  R Cooper  S Arnold  C Le  B Bradley  T Smock 《Peptides》1991,12(3):461-464
Inhibition of the hippocampus by the medial amygdala is mediated by vasopressin-like peptide. Because vasopressin has action on the periphery as well as the brain, we conducted experiments to evaluate the relationship between possible peripheral actions and the central effects of the endogenous peptide. In the acutely anesthetized rat, peptide-mediated inhibition of the hippocampus is not associated with significant changes in heart rate, blood pressure or body temperature. Peripheral injections of peptide agonist fail to evoke the central inhibition, and peripheral injections of peptide antagonist fail to block the central inhibition. Stimulation of central nuclei that contain vasopressin or a similar peptide also fail to duplicate the effect of stimulating the amygdala. We conclude that the peptidergic transmission is independent of peripheral causes or correlates.  相似文献   

16.
A monoclonal antibody directed against the amino terminal of rat phosphodiesterase 10A (PDE10A) was used to localize PDE10A in multiple central nervous system (CNS) and peripheral tissues from mouse, rat, dog, cynomolgus macaque, and human. PDE10A immunoreactivity is strongly expressed in the CNS of these species with limited expression in peripheral tissues. Within the brain, strong immunoreactivity is present in both neuronal cell bodies and neuropil of the striatum, in striatonigral and striatopallidal white matter tracks, and in the substantia nigra and globus pallidus. Outside the brain, PDE10A immunoreactivity is less intense, and distribution is limited to few tissues such as the testis, epididymal sperm, and enteric ganglia. These data demonstrate that PDE10A is an evolutionarily conserved phosphodiesterase highly expressed in the brain but with restricted distribution in the periphery in multiple mammalian species.  相似文献   

17.
The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, HI-6) to reactivate nerve agent-inhibited acetylcholinesterase was evaluated in rats poisoned with tabun or cyclosarin at a lethal dose corresponding to the LD50 value. In vivo determined percentage of reactivation of tabun-inhibited blood and brain acetylcholinesterase showed that obidoxime is the most efficacious reactivator of tabun-inhibited acetylcholinesterase among studied oximes in the peripheral compartment (blood) although the differences between obidoxime and newly developed oximes were not significant. On the other hand, one of the newly developed oximes (K074) seems to be a significantly more efficacious reactivator of tabun-inhibited acetylcholinesterase in the central compartment (brain) than the other studied oximes. In addition, the oxime HI-6 is unable to sufficiently reactivate tabun-inhibited acetylcholinesterase in rats. In vivo determined percentage of reactivation of cyclosarin-inhibited blood and brain acetylcholinesterase in poisoned rats showed that HI-6 is the most efficacious reactivator of cyclosarin-inhibited acetylcholinesterase among the studied oximes in the peripheral (blood) as well as central (brain) compartment although the differences between the oxime HI-6 and other tested oximes in the brain were not significant. Due to their reactivating effects, both newly developed K-oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisoning while the oximes HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency in reactivating cyclosarin-inhibited acetylcholinesterase in the peripheral as well as central compartment.  相似文献   

18.
Ventilatory regulation by brainstem sites rostral to the midpontile level was assessed in decerebrate cats by comparing the effects of punctate pneumotaxic center lesions with those of midpontile transection. After either procedure, PACO2 was significantly elevated. Moreover an equal suppression of hypercapnia-induced minute volumes and maintenance, at some PACO2 levels, of minute volume responses to hypoxia was observed. Tidal volume elevations accounted for the maintenance of hypoxia-induced minute volumes. Following pneumotaxic center lesions, hypercapnia-induced tidal volumes were higher than those exhibited subsequent to midpontile transection. After carotid sinus nerve section, PACO2 was elevated and hypoxia-induced alterations were abolished. Bilateral vagotomy resulted in apneusis. These data demonstrate that, in the brainstem area examined, only the pneumotaxic center influences the PACO2 level or set point for respiratory activity. A locus of tidal volume generation is ascribed to rostral brainstem sites outside this pneumotaxic center. Data obtained support the hypothesis of a differential brainstem integration of peripheral and central chemoreceptor afferent stimuli.  相似文献   

19.
TLQP-21, a vgf-derived peptide modulates gastric emptying and prevents ethanol-induced gastric lesions in rats. However, it remains to be studied whether or not TLQP-21 affects gastric acid secretion. In this study, we evaluated the effects of central (0.8–8 nmol/rat) or peripheral (48–240 nmol/kg, intraperitoneally) TLQP-21 administration on gastric acid secretion in pylorus-ligated rats. The mechanisms involved in such activity were also examined. Central TLQP-21 injection significantly reduced gastric acid volume and dose-dependently inhibited total acid output (ED50 = 2.71 nmol), while peripheral TLQP-21 administration had no effect. The TLQP-21 antisecretory activity was prevented by cysteamine (300 mg/kg, subcutaneously), a depletor of somatostatin, by indomethacin (0.25 mg/rat, intracerebroventricularly), a non-selective cyclooxygenase inhibitor, and by functional ablation of sensory nerves by capsaicin. We conclude that TLQP-21 could be considered a new member of the large group of regulatory peptides affecting gastric acid secretion. The central inhibitory effect of TLQP-21 on gastric acid secretion is mediated by endogenous somatostatin and prostaglandins and requires the integrity of sensory nerve fibres.  相似文献   

20.
目的:探讨脑梗塞过程中大脑组织中的Rho激酶活性变化,揭示其潜在的临床价值。方法:大鼠左侧颈内动脉内注射月桂酸钠,诱导同侧脑半球发生脑梗塞,建立大鼠脑梗塞模型。在注射月桂酸钠前及注射后0.5h,3h及6h四个时间点上各处死大鼠6只,取双侧大脑实质组织,用于组织匀浆提取蛋白,通过ELISA法检测大鼠大脑实质组织中Rho激酶的活性。另取6h组大鼠的大脑组织用免疫荧光染色法检测Rho激酶底物-MBS的磷酸化情况。结果:在注射月桂酸钠之后3h及6h,同侧大脑实质(即梗塞侧)内的Rho激酶活性明显高于对侧正常脑实质内的Rho激酶活性(P0.05),但在注射后0.5h内,双侧的Rho激酶活性无明显差异。结论:在大鼠脑梗塞模型中,大脑神经元内的Rho激酶活性能明显被活化,提示Rho激酶可能成为脑梗塞治疗的一个重要靶标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号