首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apicomplexan parasites critically depend on a unique form of gliding motility to colonize their hosts and to invade cells. Gliding requires different stage and species-specific transmembrane adhesins, which interact with an intracellular motor complex shared across parasite stages and species. How gliding is regulated by extracellular factors and intracellular signalling mechanisms is largely unknown, but current evidence suggests an important role for cytosolic calcium as a second messenger. Studying a Plasmodium berghei gene deletion mutant, we here provide evidence that a calcium-dependent protein kinase, CDPK3, has an important function in regulating motility of the ookinete in the mosquito midgut. We show that a cdpk3- parasite clone produces morphologically normal ookinetes, which fail to engage the midgut epithelium, due to a marked reduction in their ability to glide productively, resulting in marked reduction in malaria transmission to the mosquito. The mutant was successfully complemented with an episomally maintained cdpk3 gene, restoring mosquito transmission to wild-type level. cdpk3- ookinetes maintain their full genetic differentiation potential when microinjected into the mosquito haemocoel and cdpk3- sporozoites produced in this way are motile and infectious, suggesting an ookinete-limited essential function for CDPK3.  相似文献   

2.
Plasmodium parasites are fertilized in the mosquito midgut and develop into motile zygotes, called ookinetes, which invade the midgut epithelium. Here we show that a calcium-dependent protein kinase, CDPK3, of the rodent malarial parasite (Plasmodium berghei) is produced in the ookinete stage and has a critical role in parasite transmission to the mosquito vector. Targeted disruption of the CDPK3 gene decreased ookinete ability to infect the mosquito midgut by nearly two orders of magnitude. Electron microscopic analyses demonstrated that the disruptant ookinetes could not access midgut epithelial cells by traversing the layer covering the cell surface. An in vitro migration assay showed that these ookinetes lack the ability to migrate through an artificial gel, suggesting that this defect caused their failure to access the epithelium. In vitro migration assays also suggested that this motility is induced in the wild type by mobilization of intracellular stored calcium. These results indicate that a signalling pathway involving calcium and CDPK3 regulates ookinete penetration of the layer covering the midgut epithelium. Because humans do not possess CDPK family proteins, CDPK3 is a good target for blocking malarial transmission to the mosquito vector.  相似文献   

3.
There are multiple stages in the life cycle of Plasmodium that invade host cells. Molecular machinery involved is such host–pathogen interactions constitute excellent drug targets and/or vaccine candidates. A screen using a phage display library has previously demonstrated presence of enolase on the surface of the Plasmodium ookinete. Phage-displayed peptides that bound to the ookinete contained a conserved motif (PWWP) in their sequence. Here, direct binding of these peptides with recombinant Plasmodium falciparum enolase (rPfeno) was investigated. These peptides showed specific binding to rPfeno, but failed to bind to other enolases. Plasmodium spp enolases are distinct in having an insert of five amino acids (104EWGWS108) that is not found in host enolases. The possibility of this insert being the recognition motif for the PWWP containing peptides was examined, (i) by comparing the binding of the peptides with rPfeno and a deletion variant Δ-rPfeno lacking 104EWGWS108, (ii) by measuring the changes in proton chemical shifts of PWWP peptides on binding to different enolases and (iii) by inter-molecular docking experiment to locate the peptide binding site. Results from these studies showed that the pentapeptide insert of Pfeno indeed constitutes the binding site for the PWWP domain containing peptide ligands. Search for sequences homologous to phage displayed peptides among peritrophic matrix proteins resulted in identification of perlecan, laminin, peritrophin and spacran. The possibility of these PWWP domain-containing proteins in the peritrophic matrix of insect gut to interact with ookinete cell surface enolase and facilitate the invasion of mosquito midgut epithelium is discussed.  相似文献   

4.
We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P. berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to 'bud off' the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed.  相似文献   

5.
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.  相似文献   

6.
Minimum requirements for ookinete to oocyst transformation in Plasmodium   总被引:1,自引:0,他引:1  
During their passage through a mosquito vector, malaria parasites undergo several developmental transformations including that from a motile zygote, the ookinete, to a sessile oocyst that develops beneath the basal lamina of the midgut epithelium. This transformation process is poorly understood and the oocyst is the least studied of all the stages in the malaria life cycle. We have used an in vitro culture system to monitor morphological features associated with transformation of Plasmodium berghei ookinetes and the role of basal lamina components in this process. We also describe the minimal requirements for transformation and early oocyst development. A defined sequence of events begins with the break-up of the inner surface membrane, specifically along the convex side of the ookinete, where a protrusion occurs. A distinct form, the transforming ookinete or took, has been identified in vitro and also observed in vivo. Contrary to previous suggestions, we have shown that no basal lamina components are required to trigger ookinete to oocyst transformation in vitro. We have demonstrated that transformation does not occur spontaneously; it is initiated in the presence of bicarbonate added to PBS, but it is not mediated by changes in pH alone. Transformation is a two-step process that is not completed unless a range of nutrients are also present. A minimal medium is defined which supports transformation and oocyst growth from 7.8 to 11.4microm by day 5 with 84% viability. We conclude that ookinete transformation is mediated by bicarbonate and occurs in a similar manner to the differentiation of sporozoite to the hepatic stage.  相似文献   

7.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called "regenerative" cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

8.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called “regenerative” cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

9.
Signalling through post-translational modification (PTM) of proteins is a process central to cell homeostasis, development and responses to external stimuli. The best characterised PTM is protein phosphorylation which is reversibly catalysed at specific residues through the action of protein kinases (addition) and phosphatases (removal). Here, we report characterisation of an orphan protein phosphatase that possesses a domain architecture previously only described in Plantae. Through gene disruption and the production of active site mutants, the enzymatically active Protein Phosphatase containing Kelch-Like domains (PPKL, PBANKA_132950) is shown to play an essential role in the development of an infectious ookinete. PPKL is produced in schizonts and female gametocytes, is maternally inherited where its absence leads to the development of a malformed, immotile, non-infectious ookinete with an extended apical protrusion. The distribution of PPKL includes focussed localization at the ookinete apical tip implying a link between its activity and the correct deployment of the apical complex and microtubule cytoskeleton. Unlike wild type parasites, ppkl(-) ookinetes do not have a pronounced apical distribution of their micronemes yet secretion of microneme cargo is unaffected in the mutant implying that release of microneme cargo is either highly efficient at the malformed apical prominence or secretion may also occur from other points of the parasite, possibly the pellicular pores.  相似文献   

10.
11.
Molecules and cellular mechanisms that regulate the process of cell division in malaria parasites remain poorly understood. In this study we isolate and characterize the four Plasmodium falciparum centrins (PfCENs) and, by growth complementation studies, provide evidence for their involvement in cell division. Centrins are cytoskeleton proteins with key roles in cell division, including centrosome duplication, and possess four Ca(2+)-binding EF hand domains. By means of phylogenetic analysis, we were able to decipher the evolutionary history of centrins in eukaryotes with particular emphasis on the situation in apicomplexans and other alveolates. Plasmodium possesses orthologs of four distinct centrin paralogs traceable to the ancestral alveolate, including two that are unique to alveolates. By real time PCR and/or immunofluorescence, we determined the expression of PfCEN mRNA or protein in sporozoites, asexual blood forms, gametocytes, and in the oocysts developing inside mosquito mid-gut. Immunoelectron microscopy studies showed that centrin is expressed in close proximity with the nucleus of sporozoites and asexual schizonts. Furthermore, confocal and widefield microscopy using the double staining with alpha-tubulin and centrin antibodies strongly suggested that centrin is associated with the parasite centrosome. Following the episomal expression of the four PfCENs in a centrin knock-out Leishmania donovani parasite line that exhibited a severe growth defect, one of the PfCENs was able to partially restore Leishmania growth rate and overcome the defect in cytokinesis in such mutant cell line. To our knowledge, this study is the first characterization of a Plasmodium molecule that is involved in the process of cell division. These results provide the opportunity to further explore the role of centrins in cell division in malaria parasites and suggest novel targets to construct genetically modified, live attenuated malaria vaccines.  相似文献   

12.
Malaria‐causing parasites rely on an actin–myosin‐based motor for the invasion of different host cells and tissue traversal in mosquitoes and vertebrates. The unusual myosin A of Plasmodium spp. has a unique N‐terminal extension, which is important for red blood cell invasion by P. falciparum merozoites in vitro and harbors a phosphorylation site at serine 19. Here, using the rodent‐infecting P. berghei we show that phosphorylation of serine 19 increases ookinete but not sporozoite motility and is essential for efficient transmission of Plasmodium by mosquitoes as S19A mutants show defects in mosquito salivary gland entry. S19A along with E6R mutations slow ookinetes and salivary gland sporozoites in both 2D and 3D environments. In contrast to data from purified proteins, both E6R and S19D mutations lower force generation by sporozoites. Our data show that the phosphorylation cycle of S19 influences parasite migration and force generation and is critical for optimal migration of parasites during transmission from and to the mosquito.  相似文献   

13.
Malaria parasites undergo two rounding-up transformations in their life cycle: the ookinete-to-oocyst transformation in the mosquito midgut, and the sporozoite-to-EEF (exo-erythrocytic form) differentiation in the host hepatocyte. Both events are characterized by the loss of polarity, implying that cytoskeletal reorganization is involved. In other eukaryotes, regulation of the actin skeleton is fundamental to subcellular remodeling. Although filamentous actin is well known to be involved in the motility of apicomplexan parasites, its participation in their morphological regulation is still largely unexplored. Here we describe the fundamental role of Actin depolymerization factor 2 (ADF2), a vector-stage-specific ADF isoform, in morphological changes accompanying the parasite life cycle. Among protozoan parasites, Plasmodium is unique in having two actin and two ADF genes. Disruption of the ADF2 gene in the rodent malaria parasite P. berghei had no effect on ookinete development or its subsequent invasion of the midgut. However, both the ookinete-to-oocyst and sporozoite-to-EEF transformations showed significant defects. These results indicated that Plasmodium ADF2 plays a pivotal role in transformation in the malaria parasite life cycle.  相似文献   

14.
The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin‐VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.  相似文献   

15.
Evidence that the phosphatidylinositol cycle is linked to cell motility   总被引:10,自引:0,他引:10  
Transmembrane signaling via specific ligand/receptor interactions induces the immediate polymerization of actin and formation of microfilament assemblies close to the plasma membrane. The profilin:actin complex appears to provide the actin for this filament formation. A clue to the nature of the regulatory mechanism involved was recently found in that phosphatidylinositol 4,5-bisphosphate can bind to profilin, dissociate the profilactin complex, and thus liberate actin for polymerization. This suggests that the phosphatidylinositol (PI) cycle, which plays important roles in cellular regulation, also might control microfilament-based motility. We show here that neomycin, a drug which has a high affinity for phosphoinositides and in vivo interferes with the PI cycle, inhibits the polymerization of actin in platelets induced either by thrombin or by ADP. When ADP was used as agonist (but not in the case of thrombin) the induction of actin polymerization could also be blocked by the addition of aspirin. Introduction of Ca2+ into platelets by the use of the ionophore A23187 or stimulation of protein kinase C (PkC) by the phorbol ester TPA did not induce actin polymerization; neither did the addition of a combination of these two agents. Retinoic acid which inhibits PkC was also without effect on thrombin-induced actin polymerization.  相似文献   

16.
Recent evidence has suggested that extensive changes in the phosphorylation profile of red cell membrane proteins are associated with the invasion and development of the malarial parasite. In order to further define the role of parasite protein phosphorylation in these events we have looked at this phosphorylation using: (1) continuous metabolic labelling with [32P]orthophosphate, (2) pulse-labelling with [32P]orthophosphate and [35S]methionine, (3) autophosphorylation of infected cells using [gamma-32P]ATP, (4) invasion of prelabelled red cells. Many parasite proteins were labelled, some differentially according to the phosphorylation protocol employed, and we were able to partially characterise several of the major parasite phosphoproteins in terms of their association with host cell membrane and the stage specificity of phosphorylation.  相似文献   

17.
In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.  相似文献   

18.
The molecular mechanisms regulating the sexual development of malaria parasites from gametocytes to oocysts in their mosquito vector are still largely unexplored. In other eukaryotes, NIMA-related kinases (Neks) regulate cell cycle progression and have been implicated in the regulation of meiosis. Here, we demonstrate that Nek-4, a new Plasmodium member of the Nek family, is essential for completion of the sexual cycle of the parasite. Recombinant Plasmodium falciparum Nek-4 possesses protein kinase activity and displays substrate preferences similar to those of other Neks. Nek-4 is highly expressed in gametocytes, yet disruption of the nek-4 gene in the rodent malaria parasite P. berghei has no effect on gamete formation and subsequent fertilization. However, further differentiation of zygotes into ookinetes is abolished. Measurements of nuclear DNA content indicate that zygotes lacking Nek-4 fail to undergo the genome replication to the tetraploid level that precedes meiosis. Cell cycle progression in the zygote is identified as a likely precondition for its morphological transition to the ookinete and for the successful establishment of a malaria infection in the mosquito.  相似文献   

19.
Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.  相似文献   

20.
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号