首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and sensitive electrochemical DNA biosensor based on in situ DNA amplification with nanosilver as label and horseradish peroxide (HRP) as enhancer has been designed. The thiolated oligomer single-stranded DNA (ssDNA) was initially directly immobilized on a gold electrode, and quartz crystal microbalance (QCM) gave the specific amount of ssDNA adsorption of 6.3 ± 0.1 ng/cm2. With a competitive format, hybridization reaction was carried out via immersing the DNA biosensor into a stirred hybridization solution containing different concentrations of the complementary ssDNA and constant concentration of nanosilver-labeled ssDNA, and then further binding with HRP. The adsorbed HRP amount on the probe surface decreased with the increment of the target ssDNA in the sample. The hybridization events were monitored by using differential pulse voltammetry (DPV) with the adsorbed HRP toward the reduction of H2O2. The reduction current from the enzyme-generated product was related to the number of target ssDNA molecules in the sample. A detection of 15 pmol/L for target ssDNA was obtained with the electrochemical DNA biosensor. Additionally, the developed approach can effectively discriminate complementary from non-complementary DNA sequence, suggesting that the similar enzyme-labeled DNA assay method hold great promises for sensitive electrochemical biosensor applications.  相似文献   

2.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

3.
In this study, a novel DNA electrochemical probe (locked nucleic acid, LNA) was designed and involved in constructing an electrochemical DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia for the first time. This biosensor was based on a 'sandwich' sensing mode, which involved a pair of LNA probes (capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase (streptavidin-HRP). Since biotin can be connected with streptavidin-HRP, this biosensor offered an enzymatically amplified electrochemical current signal for the detection of target DNA. In the simple hybridization system, DNA fragment with its complementary DNA fragment was evidenced by amperometric detection, with a detection limit of 74 fM and a linear response range of 0.1-10 pM for synthetic PML/RARα fusion gene in acute promyelocytic leukemia (APL). Otherwise, the biosensor showed an excellent specificity to distinguish the complementary sequence and different mismatch sequences. The new pattern also exhibited high sensitivity and selectivity in mixed hybridization system.  相似文献   

4.
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome.  相似文献   

5.
Epstein-Barr virus (EBV) is a human herpes virus that has been associated with several malignancies as Burkitt's lymphoma, nasopharyngeal carcinoma and Hodgkin's disease. All EBV associated malignancies showed a distinct viral gene expression pattern, while Epstein-Barr nuclear antigen 1 (EBNA-1) is constitutively expressed in all such disorders. Here, the development of a biosensor to detect EBNA-1 protein is reported, which was based on a nucleic acid bioreceptor and a quartz crystal microbalance with a dissipation monitoring (QCM-D) transducer. The DNA probe for EBNA-1 detection was designed and synthesized to mimic its palindromic target sites in the EBV genome. This DNA probe was immobilized on the Au-surface of a QCM-D electrode, followed by the blocking of the accessible Au-surface with 6-mercapto-1-hexanol (6-MHO). The system showed a limit of detection of 50 ng/mL in direct detection of EBNA-1, however, the sensitivity was improved by 2 orders of magnitude (0.5 ng/mL) when an amplification cascade, employing antibodies labeled with alkaline phosphatase (AP), was applied to the system.  相似文献   

6.
In this study, an enzyme-amplified electrochemical biosensor was developed for detection of the promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia (APL). This new sensor employs a hairpin locked nucleic acids (LNAs) probe dually labeled with biotin and carboxyfluorescein molecule (FAM). The probe is immobilized at a streptavidin-modified electrode surface via the biotin-streptavidin bridge, and FAM serves as an affinity tag for the peroxidase conjugate binding. Initially, the immobilized hairpin probe was in the "closed" state in the absence of the target, which shielded FAM from being approached by the bulky anti-FAM-HRP conjugate due to the steric effect. Target binding opens the hairpin structure of the probe, the probe undergoes a significant conformational change, forcing FAM away from the electrode. As a result, the FAM label becomes accessible by the anti-FAM-HRP, and the target hybridization event can be sensitively transduced via the enzymatically amplified electrochemical current signal. This new biosensor demonstrates its excellent specificity for single-base mismatch and able to detect as little as 83 fM target DNA even in the presence of human serum. We also employed this sensor to directly detect PCR real sample with satisfactory results.  相似文献   

7.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

8.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

9.
Here, an ultrasensitive label-free electrochemical aptasensor was developed for dopamine (DA) detection. Construction of the aptasensor was carried out by electrodeposition of gold–platinum nanoparticles (Au–PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs–COOH). A designed complementary amine-capped capture probe (ssDNA1) was immobilized at the surface of PtNPs/CNTs–COOH/GC electrode through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides. DA-specific aptamer was attached onto the electrode surface through hybridization with the ssDNA1. Methylene blue (MB) was used as an electrochemical indicator that was intercalated into the aptamer through the specific interaction with its guanine bases. In the presence of DA, the interaction between aptamer and DA displaced the MB from the electrode surface, rendering a lowered electrochemical signal attributed to a decreased amount of adsorbed MB. This phenomenon can be applied for DA detection. The peak current of probe (MB) linearly decreased over a DA concentration range of 1–30 nM with a detection limit of 0.22 nM.  相似文献   

10.
A current from DNA was obtained using a silver electrode with low overpotentials for the first time. Experimental results revealed that the voltammetric response of DNA was attributed to the redox reactions of purine bases. It was also shown that such a method provided a convenient and practical way to determine DNA. A linear dependence of the peak currents on ssDNA concentrations was observed in the range 0.5-2.5 microg/mL. The relative standard deviation was 3.5% for six successive determinations at 0.5 microg/mL. The detection limit was 50 ng/mL. Influence of the structure and the length of the nucleic acids on their electrochemical behavior was discussed. In view of the merits of the silver electrode, this technique might provide new possibilities for further electrochemical research and determination of nucleic acids.  相似文献   

11.
Lipopolysaccharide (LPS) often referred to endotoxin is an undesirable impurity frequently entrained with various recombinant protein therapeutics and plasmid DNA (pDNA) vaccines of bacterial origin. The inherent toxicities (e.g. fever, hypotension, shock and death) of LPS render its early and sensitive detection essential for several biological assays and/or parenteral administrations of biotherapeutics. In this study, an electrochemical biosensor using an LPS specific single stranded DNA (ssDNA) aptamer as a probe was developed. Amine-terminated aptamer exhibiting high affinity (K(d)=11.9 nM) to LPS was immobilized on a gold electrode using 3-mercaptopropionic acid (MPA) as a linker. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impendence spectroscopy (EIS). A good linear relationship of the changes in the charge-transfer resistance (ΔR(et)) and the logarithmic value of LPS concentration was demonstrated in a broad dynamic detection range of 0.001-1 ng/ml. Furthermore, the aptasensor showed a high selectivity to LPS despite the presence of pDNA, RNA and bovine serum albumin (BSA) and could be regenerated in low pH condition, offering a promising option for detecting LPS often present in a complex milieu.  相似文献   

12.
A new procedure for fabricating deoxyribonucleic acid (DNA) electrochemical biosensor was developed based on covalent immobilization of target single-stranded DNA (ssDNA) on Au electrode that had been functionalized by direct coupling of sol-gel and self-assembled technologies. Two siloxanes, 3-mercaptopropyltrimethoxysiloxane (MPTMS) and 3-glycidoxypropyltrimethoxysiloxane (GPTMS) were used as precursors to prepare functionally self-assembly sol-gel film on Au electrode. The thiol group of MPTMS allowed assembly of MPTMS sol-gel on gold electrode surface. Through co-condensation between silanols, GPTMS sol-gel with epoxide groups interconnected into MPTMS sol-gel and enabled covalent immobilization of target NH(2)-ssDNA through epoxide/amine coupling reaction. The concentration of MPTMS and GPTMS influenced the performance of the resulting biosensor due to competitive sol-gel process. The linear range of the developed biosensor for determination of complementary ssDNA was from 2.51 x 10(-9) to 5.02 x 10(-7)M with a detection limit of 8.57 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of target ssDNA on self-assembled sol-gel matrix could serve as a versatile platform for DNA immobilization and fabrication of biosensors.  相似文献   

13.
A new electrochemical DNA biosensor for bovine papillomavirus (BPV) detection that was based on screen-printed electrodes was comprehensively studied by electrochemical methods of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). A BPV probe was immobilised on a working electrode (gold) modified with a polymeric film of poly-L-lysine (PLL) and chitosan. The experimental design was carried out to evaluate the influence of polymers, probe concentration (BPV probe) and immobilisation time on the electrochemical reduction of methylene blue (MB). The polymer poly-L-lysine (PLL), a probe concentration of 1μM and an immobilisation time of 60min showed the best result for the BPV probe immobilisation. With the hybridisation of a complementary target sequence (BPV target), the electrochemical signal decreased compared to a BPV probe immobilised on the modified PLL-gold electrode. Viral DNA that was extracted from cattle with papillomatosis also showed a decrease in the MB electrochemical reduction, which suggested that the decreased electrochemical signal corresponded to a bovine papillomavirus infection. The hybridisation specificity experiments further indicated that the biosensor could discriminate the complementary sequence from the non-complementary sequence. Thus, the results showed that the development of analytical devices, such as a biosensor, could assist in the rapid and efficient detection of bovine papillomavirus DNA and help in the prevention and treatment of papillomatosis in cattle.  相似文献   

14.
A direct electrochemical DNA biosensor based on zero current potentiometry was fabricated by immobilization of ssDNA onto gold nanoparticles (AuNPs) coated pencil graphite electrode (PGE). One ssDNA/AuNPs/PGE was connected in series between clips of working and counter electrodes of a potentiostat, and then immersed into the solution together with a reference electrode, establishing a novel DNA biosensor for specific DNA detection. The variation of zero current potential difference (ΔE(zcp)) before and after hybridization of the self-assembled probe DNA with the target DNA was used as a signal to characterize and quantify the target DNA sequence. The whole DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. Under the optimized conditions, ΔE(zcp) was linear with the concentrations of the complementary target DNA in the range from 10nM to 1μM, with a detection limit of 6.9nM. The DNA biosensor showed a good reproducibility and selectivity. Prepared DNA biosensor is facile and sensitive, and it eliminates the need of using exogenous reagents to monitor the oligonucleotides hybridization.  相似文献   

15.
Abstract

This work describes, for the first time, the fabrication of poly(L-aspartic acid) (PAA) film modified pencil graphite electrode (PGE) for the detection of hepatitis C Virus 1a (HCV1a). The presence of PAA on the electrode surface can provide free carboxyl groups for covalent binding of biomolecules. The PGE surface was first coated with PAA via electropolymerization of the L-aspartic acid, and avidin was subsequently attached to the PAA modified electrode by covalent attachment. Biotinylated HCV1a probes were immobilized on avidin/PAA/PGE via avidin-biotin interaction. The morphology of PAA/PGE was examined using a scanning electron microscope. The hybridization events were monitored with square wave voltammetry using Meldola’s blue (MDB). Compared to non-complementary oligonucleotide sequences, when hybridization was carried out between the probe and its synthetic targets or the synthetic polymerase chain reaction analog of HCV1a, the highest MDB signal was observed. The linear range of the biosensor was 12.5 to 100?nM and limit of detection was calculated as 8.7?nM. The biosensor exhibited favorable stability over relatively long-term storage. All these results suggest that PAA-modified electrode can be used to nucleic acid biosensor application and electropolymerization of L-aspartic acid can be considered as a good candidate for the immobilization of biomolecules.  相似文献   

16.
An electrochemical genosensor for the detection of hypermethylation of the glutathione S-transferase P1 (GSTP1) gene, a specific marker of prostate cancer, was reported. This new sensor was used in combination with a single-use carbon graphite working electrode and differential pulse voltammetry, with the results of sample analysis based on the guanine oxidation signals obtained at +1.0 V before and after hybridization between probe and synthetic target or denatured PCR samples. The detected DNA hybridization was also characterized by electrochemical impedance spectroscopy with potassium ferri/ferrocyanide as a redox probe. The protocol consisted of 2 different modes: (i) capture probes selective for methylation-specific and unmethylated GSTP1 sequences were immobilized onto the sensor directly, and hybridization was formed on the electrode surface; (ii) probe/target or probe/noncomplementary target couples were mixed in solution phase, and the transducer was modified through simple adsorption. The limit of detection (S/N=3) was calculated as 2.92 pmol of target sequence in a 100-μl reaction volume. The optimum analytical detection parameters for the biosensor, as well as its future prospects, were also presented.  相似文献   

17.
A novel reagentless immunosensor was fabricated by immobilization of redox mediator 3,3',5,5'-tetramethylbenzidine (TMB) on the Nafion (Nf) film modified glassy carbon electrode. Gold nanoparticles were assembled onto the TMB/Nafion film modified electrode to provide active sites for the immobilization of antibody molecules. The antibody (anti-MIgG), in the present study, was fixed on the electrode for the rapid detection of antigen molecules (MIgG as a model analyte). The results showed that the immunosensor based on the immobilized TMB redox mediator exhibited good electrochemical response. A good linear relationship between peak current and the concentration of the MIgG was obtained in the concentration range from 4 to 120ng/mL. The detection limit was estimated to be 1ng/ml. Under the optimized conditions, the immunosensor exhibits good sensitivity, reproducibility and stability.  相似文献   

18.
Mao X  Jiang J  Xu X  Chu X  Luo Y  Shen G  Yu R 《Biosensors & bioelectronics》2008,23(10):1555-1561
We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.  相似文献   

19.
We have designed an electrochemical DNA biosensor based on stem-loop structured probes for enzymatic detection of Pseudomonas aeruginosa 16S ribosomal RNA (rRNA) in composting degradation. The probe modified with a thiol at its 5′ end and a biotin at its 3′ end was immobilized on a gold electrode through self-assembly. The stem-loop structured probes were “closed” when target was absent, then the hybridization of the target induced the conformational changes to “open”, along with the biotin at its 3′ end binding with streptavidin-horseradish peroxidase (HRP), and subsequent quanti?cation of the target was detected via electrochemical detecting the enzymatic product in the presence of substrate. Under the optimum experiment conditions, the amperometric current response to HRP-catalyzed reaction was linearly related to the logarithm of the target nucleic acid concentration, ranging from 0.3 and 600 pg/μL, with the detection limit of 0.012 pg/μL. A correlation coefficient of 0.9960 was identified. The 16S rRNA extracted from P. aeruginosa was analyzed by this proposed sensor. The results were in agreement with the reference values deduced from UV spectrometric data. The biosensor was indicative of good precision, stability, sensitivity, and selectivity.  相似文献   

20.
Boron-doped diamond has drawn much attention in electrochemical sensors. However there are few reports on non-doped diamond because of its weak conductivity. Here, we reported a glucose biosensor based on electrochemical pretreatment of non-doped nanocrystalline diamond (N-NCD) modified gold electrode for the selective detection of glucose. N-NCD was coated on gold electrode and glucose oxidase (GOx) was immobilized onto the surfaces of N-NCD by forming amide linkages between enzyme amine residues and carboxylic acid groups on N-NCD. The anodic pretreatment of N-NCD modified electrode not only promoted the electron transfer rate in the N-NCD thin film, but also resulted in a dramatic improvement in the reduction of the dissolved oxygen. This performance could be used to detect glucose at negative potential through monitoring the current change of oxygen reduction. The biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA). A wide linear calibration range from 10 microM to 15 mM and a low detection limit of 5 microM were achieved for the detection of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号