首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

2.
High molecular weight microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2), prepared by copolymerization with tubulin, were electrophorectically separated into three and two major subcomponents, respectively, using 5% sodium dodecyl sulfate-polyacrylamide gels. By two-dimensional gel electrophoresis, all five MAP components were shown to possess a pI of around 5. Four of these proteins, MAP-1A, MAP-1C, MAP-2A, and MAP-2B, present in comparable amounts, were iodinated after electrophoretic separation and analyzed by two-dimensional peptide mapping. With both trypsin and V8 protease, almost identical patterns were obtained from MAP-2A and MAP-2B. MAP-1A and MAP-1C, too, gave similar digestion patterns, although some differences were noted. Incubation with [gamma-32P]ATP demonstrated that endogeneous protein kinase activities phosphorylated individual subcomponents at different rates. MAP-2A, the highest labeled component, was phosphorylated 2.5-fold compared to MAP-2B both in the presence and the absence of cAMP. Labeling of MAP-1 subcomponents was 4 times less than that of MAP-2A in the absence and 16 times less in the presence of cAMP. 32P-labeled MAP-2A and MAP-2B bands were indistinguishable by one-dimensional peptide mapping, as were the three MAP-1 bands. For both MAP-1 and MAP-2 subcomponents, cAMP induced phosphorylation at new molecular sites. Incubation of radiolabeled microtubule proteins with 1 mM ATP effected, upon electrophoresis, a clear shift of MAP-2A and MAP-2B bands to positions of higher apparent molecular weights, while only slightly affecting MAP-1 bands.  相似文献   

3.
Microtubule-associated protein tau from Alzheimer brain has been shown to be phosphorylated at several ser/thr-pro and ser/thr-X sites (Hasegawa, M. et al., J. Biol. Chem, 267, 17047–17054, 1992). Several proline-dependent protein kinases (PDPKs) (MAP kinase, cdc2 kinase, glycogen synthase kinase-3, tubulin-activated protein kinase, and 40 kDa neurofilament kinase) are implicated in the phosphorylation of the ser-thr-pro sites. The identity of the kinase(s) that phosphorylate that ser/thr-X sites are unknown. To identify the latter kinase(s) we have compared the phosphorylation of bovine tau by several brain protein kinases. Stoichiometric phosphorylation of tau was achieved by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, protein kinase C and cyclic AMP-dependent protein kinase, but not with casein kinase-2 or phosphorylase kinase. Casein kinase-1 and calmodulin-dependent protein kinase II were the best tau kinases, with greater than 4 mol and 3 mol32P incorporated, respectively, into each mol of tau. With the sequential addition of these two kinases,32P incorporation approached 6 mol. Peptide mapping revealed that the different kinases largely phosphorylate different sites on tau. After phosphorylation by casein kinase-1, calmodulin-dependent protein kinase II, Gr kinase, cyclic AMP-dependent protein kinase and casein kinase-2, the mobility of tau isoforms as detected by SDS-PAGE was decreased. Protein kinase C phosphorylation did not produce such a mobility shift. Our results suggest that one or more of the kinases studied here may participate in the hyperphosphorylation of tau in Alzheimer disease. Such phosphorylation may serve to modulate the activaties of other tau kinases such as the PDPKs.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium-phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - Gr kinase calcium/calmodulin-dependent protein kinase from rat cerebellum - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

4.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

5.
Proteolysis of Microtubule-Associated Protein 2 and Tubulin by Cathepsin D   总被引:3,自引:0,他引:3  
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and tubulin by the lysosomal aspartyl endopeptidase cathepsin D was studied. MAP-2 was very sensitive to cathepsin D-induced hydrolysis in a relatively broad, acidic pH range (3.0-5.0). However, at a pH value of 5.5, cathepsin D-mediated hydrolysis of MAP-2 was significantly reduced and at pH 6.0 only a small amount of MAP-2 was degraded at 60 min. Interestingly, the two electrophoretic forms of MAP-2 showed different sensitivities to cathepsin D-induced degradation, with MAP-2b being significantly more resistant to hydrolysis than MAP-2a. To our knowledge, this is the first clear demonstration that MAP-2 is a substrate in vitro for cathepsin D. In contrast to MAP-2, tubulin was relatively resistant to cathepsin D-induced hydrolysis. At pH 3.5 and an enzyme-to-substrate ratio of 1: 20, only 35% of the tubulin was degraded by cathepsin D at 60 min. The cathepsin D-mediated hydrolysis of tubulin was optimal only at pH 4.5. These results demonstrate that MAP-2 and tubulin are unequally susceptible to degradation by cathepsin D. These data also imply a potential for rapid degradation of MAP-2 in vivo by cathepsin D either in lysosomes or perhaps autophagic vacuoles of the neuron.  相似文献   

6.
Of 21 phosphorylation sites identified in PHF-tau 11 are on ser/thr-X motifs and are probably phosphorylated by non-proline-dependent protein kinases (non-PDPKs). The identities of the non-PDPKs and how they interact to hyperphosphorylate PHF-tau are still unclear. In a previous study we have shown that the rate of phosphorylation of human tau 39 by a PDPK (GSK-3) was increased several fold if tau were first prephosphorylated by non-PDPKs (Singh et al., FEBS Lett 358: 267-272, 1995). In this study we have examined how the specificity of a non-PDPK for different sites on human tau 39 is modulated when tau is prephosphorylated by other non-PDPKs (A-kinase, C-kinase, CK-1, CaM kinase II) as well as a PDPK (GSK-3). We found that the rate of phosphorylation of tau 39 by a non-PDPK can be stimulated if tau were first prephosphorylated by other non-PDPKs. Of the four non-PDPKs only CK-1 can phosphorylate sites (thr 231, ser 396, ser 404) known to be present in PHF-tau. Further, these sites were phosphorylated more rapidly and to a greater extent by CK-1 if tau 39 were first prephosphorylated by A-kinase, CaM kinase II or GSK-3. These results suggest that the site specificities of the non-PDPKs that participate in PHF-tau hyperphosphorylation can be modulated at the substrate level by the phosphorylation state of tau.Abbreviations PHF paired helical filaments - A-kinase cyclic AMP-dependent protein kinase - CaM kinase II calcium/calmodulin-dependent protein kinase II - C-kinase calcium/phospholipid-dependent protein kinase - CK-1 casein kinase-1 - CK-2 casein kinase-2 - GSK-3 glycogen synthase kinase-3 - MAP kinase mitogen-activated protein kinase - PDPK proline-dependent protein kinase  相似文献   

7.
Numerous phosphates of microtubule-associated protein 2 in living rat brain   总被引:12,自引:0,他引:12  
Microtubule-associated protein 2 (MAP 2) purified from microwave-irradiated rat head contained about 46 esterified phosphates (mole/mol), which were not bound covalently to lipids and did not assemble with microtubules. After some phosphates were released by calf intestinal alkaline phosphatase, the phosphate content of MAP-2 decreased to 16 mol of phosphate and the protein assembled in vitro. MAP-2 purified after microtubule assembly cycles and also the cytosolic heat-stable fraction without assembly cycles had 10 mol of phosphate, and both assembled with microtubules. The MAP-2 with 46 phosphates and that with 10 had different pI in isoelectric focusing, but the components, MAP-2a and -2b, were always near each other. In high-pressure liquid chromatography, MAP-2 containing 46 mol of phosphate appeared after that 10 mol of phosphate. Phosphoserine, phosphothreonine, and phosphotyrosine were recovered from tryptic digestion of MAP-2 with 46 mol of phosphate. These findings suggest that two kinds of MAP-2, one with 46 phosphates and not bound to tubulin and the other with 10-16 phosphates and bound to tubulin, are present in the living rat brain.  相似文献   

8.
The phosphorylation of microtubular proteins isolated by reassembly in vitro from slices of guinea-pig cerebral cortex labelled with [32P]orthophosphate was investigated. Under the conditions tested, both and the alpha and beta forms of tubulin contained metabolically-active P which accounted for about one third of the total 32P incorporated into protein; the remaining protein-bound 32P was associated with 3-4 minor high MW components co-purifying with tubulin during two cycles of assembly-disassembly. Microtubular protein prepared in this way contained approx. 0.8 mol of alkalilabile P/mol of tubulin dimer (M.W. 110,000). In vitro studies showed that reassembled microtubular protein preparations catalysed the incorporation of up to 0.55 mol of P/mol of tubulin dimer during incubation with Mg2+ and [gamma 32P]ATP. The reaction was linear during the first 30 min of incubation at 37 degrees C. Cyclic AMP (10 microM, final concentration) caused a transient increase in the initial rates of tubulin phosphorylation. Little label was incorporated into the minor high M.W. components under these conditions. The in vitro phosphorylation of microtubular protein increased in a non-linear manner with respect to protein concentration: this was in contrast to earlier experiments showing linear kinetics when chromatographically isolated tubulin was tested for intrinsic kinase activity. Isolated microtubular protein preparations bound [3H]GTP, [3H]ATP and to a lesser extent, [3H]cyclic AMP, and exhibited Ca(2+)-ATPase activity (up to 60 pmol Pi released min/mg protein at 37 degrees C).  相似文献   

9.
Estramustine-phosphate (EMP), a phosphorylated conjugate of estradiol and nor-nitrogen mustard binds to microtubule-associated proteins MAP-2 and tau. It was shown that this estramustine derivative inhibits the binding of the C-terminal tubulin peptide beta-(422-434) to both MAP-2 and tau. This tubulin segment constitutes a main binding domain for these microtubule-associated proteins. Interestingly, estramustine-phosphate interacted with the synthetic tau peptides V187-G204 and V218-G235, representing two major repeats within the conserved microtubule-binding domain on tau and also on MAP-2. This observation was corroborated by the inhibitory effects of estramustine-phosphate on the tau peptide-induced tubulin assembly into microtubules. On the other hand, the nonphosphorylated drug estramustine failed to block the MAP peptide-induced assembly, indicating that the negatively charged phosphate moiety of estramustine-phosphate is of importance for its inhibitory effect. These findings suggest that the molecular sites for the action of estramustine-phosphate are located within the microtubule binding domains on tau and MAP-2.  相似文献   

10.
The structural-functional aspects of the tubulin binding domain on the microtubule-associated protein MAP-2, and its relationship with the tubulin binding domain on tau, were studied using anti-idiotypic antibodies that react specifically with the epitope(s) on MAPs involved in their interaction with tubulin in addition to other tau and MAP-2 specific antibodies. Previous studies showed that MAP-2 and tau share common binding sites on tubulin defined by the peptide sequences alpha (430-441) and beta (422-434) of tubulin subunits. Furthermore, binding experiments revealed the existence of multiple sites for the interaction of the alpha- and beta-tubulin peptides with MAP-2 and tau. Most recent studies showed that the synthetic tau peptide Val187-Gly204 (VRSKIGSTENLKHQPGGG) from the repetitive sequence on tau defines a tubulin binding site on tau. Our present immunological studies using anti-idiotypic antibodies which interact with the synthetic tau peptide and antibodies against the Val187-Gly204 tau peptide indicate that MAP-2 and tau share common antigenic determinants at the level of their respective tubulin binding domains. These antigenic determinants appear to be present in the 35 kDa tubulin binding fragment of MAP-2 and in 18-20 kDa chymotryptic fragments containing the tubulin binding site(s) on MAP-2. These findings, along with structural information on these proteins, provide strong evidence in favor of the hypothesis that tubulin binding domains on MAP-2 and tau share similar structural features.  相似文献   

11.
Phosphorylation of calcineurin by glycogen synthase (casein) kinase-1   总被引:1,自引:0,他引:1  
A previous study demonstrated that calcineurin preparations contain variable amounts of endogenous phosphate. This observation suggests that calcineurin may be regulated by protein phosphorylation. In this study we have used calcineurin as a potential substrate for eight different protein kinases and significant phosphorylation was observed only with glycogen synthase (casein) kinase-1 (CK-1). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that only subunit A of calcineurin was phosphorylated. The incorporation of 32P into calcineurin catalyzed by CK-1 ranged from 0.4 to 1.5 mol, depending on the preparation of the substrate used. Peptide mapping revealed that two major sites on calcineurin were phosphorylated. No change in calcineurin activity was observed as a result of phosphorylation. The results of this study suggest that CK-1 may be responsible for phosphorylating calcineurin in vivo.  相似文献   

12.
A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic peptide corresponding to amino acids 464-476 of EBNA-2 as a substrate led to the incorporation of 0.69 mol phosphate/mol peptide indicating that only one of three potential phosphorylation sites within the peptide was modified. The most likely amino acid residues for phosphorylation by CK-2 are Ser469 and Ser470.  相似文献   

13.
The most conspicuous brain microtubule-associated protein, MAP-2, has been shown to contain 8-10 mol of covalently bound phosphate/mol, as isolated. The MAP-2-associated cAMP-dependent protein kinase can add 10-12 more phosphates, using cycled microtubule preparations, but it does not catalyze exchange between ATP and the pre-existing protein phosphate. We now show that the phosphates that turn over in vivo, after intracerebral injection of 32Pi, are primarily in the projection domain of MAP-2, whereas the sites phosphorylated in vitro are more concentrated in the binding domain. Phosphoserine and phosphothreonine were recovered in a 6:1 ratio from partial acid hydrolysates of MAP-2 phosphorylated either in vivo or in vitro. A protein phosphatase, purified from brain, released residues from in vitro sites in both domains. The enzyme did not release appreciable phosphate that had turned over in vivo, and similar specificity was shown by three other purified protein phosphatases: calcineurin (also from brain) and smooth muscle phosphatases I and II. Thus, even in the projection domain, different sites may be involved.  相似文献   

14.
The association of regulatory subunits (RII) of Type II cAMP-dependent protein kinase from bovine cerebral cortex (RII-B) and bovine cardiac and skeletal muscle (RII-H) with specific binding proteins in bovine brain cytosol and purified brain microtubules was demonstrated using a solid phase binding assay. RII-binding proteins present in bovine cerebral cortex were immobilized on nitrocellulose filters after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the filters with 32P-labeled regulatory subunits showed that both RII-B and RII-H interact with the 75,000-dalton calmodulin-binding protein (P75) and microtubule-associated protein 2 (MAP-2). However, significant differences in binding affinities and capacities were observed. RII-B displayed a higher affinity for P75 compared to RII-H while RII-H preferentially bound to MAP-2. Quantitation of radioactive RII bound to MAP-2 showed that MAP-2 bound 4-6 times more RII-H than RII-B. The differential binding affinities and capacities of RII-H and RII-B for MAP-2 were not affected by autophosphorylation since both phospho and dephospho forms of RII displayed the same binding characteristics. Competitive binding studies suggest that RII-H and RII-B bind to the same sites on MAP-2. The biochemical basis for the differential binding of RII-B and RII-H to the same sites of MAP-2 is unknown. However, other high affinity RII-binding proteins present in cerebral cortex (i.e. P75) might affect the affinity of RII-B for MAP-2. 32P-RI did not bind to P75 nor MAP-2 under the conditions used.  相似文献   

15.
Chymotryptic digestion was used to localize the sites in microtubule-associated protein 2 which are preferentially phosphorylated in vitro by MAP kinase, an insulin-stimulated serine/threonine kinase which efficiently utilizes high molecular weight MAPs as substrates. MAP kinase phosphorylates sites in the projection domain almost exclusively; less than 6% of the phosphate incorporated by MAP kinase was found in the tubulin binding domain. This site specificity is in marked contrast to that of the catalytic subunit of cAMP dependent protein kinase, and most other protein kinases phosphorylating MAP-2, which extensively phosphorylate the tubulin binding domain.  相似文献   

16.
Single cardiac myocytes were isolated from hearts of 9 to 12-week-old rats by means of collagenase (100 U/ml). After assessment of their functional integrity they were processed for immunofluorescence microscopy of the cytoskeletal proteins tubulin, microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2), plectin, vimentin, and vinculin. Antibodies to tubulin decorated a delicate filamentous network that apparently was unrelated to any sarcomeric organization. The distribution of MAP-1 and MAP-2 was strikingly different from that of tubulin, as both antigens were confined to Z-line structures. These structures were also prominently stained by affinity-purified antibodies to plectin and a monoclonal antibody to vimentin. Co-distribution of plectin and vimentin was also observed at the former intercalated disk region of the heart cell. Anti-vinculin antibodies decorated an intricate meshwork consisting of delicate filaments with predominantly irregular orientation and occasional assembly into whorls. These immunolocalization data indicate that the cell shape and cytoskeletal architecture characteristic of cardiac myocytes in tissues is maintained in single isolated cells. Furthermore, intermediate filaments rather than microtubules seem to be instrumental in the preservation of cell morphology.  相似文献   

17.
Interaction of microtubule-associated protein 2 with actin filaments   总被引:8,自引:0,他引:8  
R F Sattilaro 《Biochemistry》1986,25(8):2003-2009
The interaction of unphosphorylated and phosphorylated microtubule-associated protein 2 (MAP-2) with actin filaments was examined by electron microscopic, electrophoretic, and dark-field light microscopic techniques. Unphosphorylated MAP-2 was observed to cross-link and bundle individual actin filaments. Chymotryptic fragments of MAP-2 protein were produced which bound to, but could not cross-link, actin polymer; these fragments encompassed the tubulin binding domain of MAP-2. The phosphorylation of intact MAP-2, by means of endogenous protein kinases, inhibited the ability of this molecule to cross-link and bundle actin filaments. Phosphorylation did not, however, inhibit the binding of MAP-2 to F-actin. The chymotryptic fragments of phosphorylated MAP-2 that retained their ability to bind to actin and promote microtubule assembly also encompassed the tubulin binding domain of this molecule. An analysis of MAP-2 fragments by nonequilibrium pH gradient electrophoresis indicated that most of the polypeptide backbone is relatively acidic with the exception of the tubulin binding domain. This region was determined to be the most basic (positively charged) region of the MAP-2 molecule. Biochemical and morphological evidence is presented to demonstrate that both unphosphorylated MAP-2 and phosphorylated MAP-2 have the capacity to use actin, in addition to microtubules, as a separate anchoring substrate. The presence of tubulin, however, strongly inhibits the interaction of MAP-2 with actin filaments.  相似文献   

18.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

19.
The rat pituitary cell line GH3 contains a high molecular weight microtubule-associated protein with properties characteristic of microtubule-associated protein-2 (MAP-2). The 280-kDa protein is selectively immunoprecipitated by antibodies to authentic bovine brain MAP-2 and is phosphorylated at appropriate sites by cAMP-dependent protein kinase (cAMP kinase) and multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Although MAP-2 is a minor cellular constituent, it can be immunoprecipitated from [32P]Pi-labeled GH3 cells and shown to contain a high level of basal phosphorylation. Vasoactive intestinal peptide, forskolin, 3-isobutyl-1-methylxanthene, or cholera toxin, treatments which increase cellular cAMP levels, or dibutyryl cAMP stimulate phosphorylation of specific sites on MAP-2 without significantly increasing its high state of basal phosphorylation. Phosphopeptide mapping reveals that the sites phosphorylated by cAMP kinase in vitro are the same sites whose phosphorylation in situ increases following stimulation of GH3 with agents that activate cAMP kinase. Increasing intracellular Ca2+ levels in GH3 cells also stimulates phosphorylation of MAP-2 but at sites distinct from those phosphorylated following treatment with cAMP inducing agonists. Phosphopeptide mapping indicates that the sites phosphorylated by CaM kinase in vitro are the same sites whose phosphorylation in situ increases following Ca2(+)-mediated stimulation. We conclude that activation of cAMP- and Ca2(+)-based signaling pathways leads to phosphorylation of MAP-2 in GH3 cells and that cAMP kinase and CaM kinase mediate phosphorylation by these pathways, respectively.  相似文献   

20.
The occurrence and cellular localization of polypeptides related to hog brain microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2) in non-neuronal cell lines of various species and types, and in several tissues from rat was studied. When insoluble cell fractions were prepared by incubation of isotonic cell extracts with 20 microM taxol, polypeptides co-migrating with MAP-1 and MAP-2 upon gel electrophoresis were observed in virtually all cases examined. Immunoblotting of preparations from 3T6, CHO, HeLa and N2A cells, as well as pituitary, heart, testis and liver revealed immuno-reactivity with antibodies to neuronal MAP-1 for polypeptides co-migrating with MAP-1 in all cases, except for HeLa cells and liver. With similar preparations, antibodies raised to neuronal MAP-2 were barely reactive with bands of the MAP-2 size except for N2A cells and pituitary gland. In all cases of non-neuronal cells and tissues, major cross-reactive bands, however, were of mol. wt. lower than that of MAP-2, indicating, most likely, proteolytic breakdown of MAP-2 during cell fractionation. As shown by double immunofluorescence microscopy of various cultured cell lines using affinity-purified antibodies to MAPs, and monoclonal antibodies to tubulin, MAP-1-as well as MAP-2-related antigens were generally, but not exclusively, associated with typical microtubule structures of the cytoplasm, spindle, midbody and primary cilia. Antigens related to both MAPs were also localized in frozen sections of rat trachea, testis, pituitary, kidney and cardiac and skeletal muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号