首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of water transport via aquaporin-2 (AQP2) water channels in renal collecting duct principal cells is reflected by the level of the urinary excretion of AQP2 (u-AQP2). In rats, the AQP2 expression varies with sodium intake. In humans, the effect of sodium intake on u-AQP2 and the underlying mechanisms have not previously been studied. We measured the effect of 4 days of high sodium (HS) intake (300 mmol sodium/day; 17.5 g salt/day) and 4 days of low sodium (LS) intake (30 mmol sodium/day; 1.8 g salt/day) on u-AQP2, fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), urinary excretion of PGE(2) (u-PGE(2)) and cAMP (u-cAMP), and plasma concentrations of vasopressin (AVP), renin (PRC), ANG II, aldosterone (Aldo), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) in a randomized, crossover study of 21 healthy subjects, during 24-h urine collection and after hypertonic saline infusion. The 24-h urinary sodium excretion was significantly higher during HS intake (213 vs. 41 mmol/24 h). ANP and BNP were significantly lower and PRC, ANG II, and Aldo were significantly higher during LS intake. AVP, u-cAMP, and u-PGE(2) were similar during HS and LS intake, but u-AQP2 was significantly higher during HS intake. The increases in AVP and u-AQP2 in response to hypertonic saline infusion were similar during HS and LS intake. In conclusion, u-AQP2 was increased during HS intake, indicating that water transport via AQP2 was increased. The effect was mediated by an unknown AVP-independent mechanism.  相似文献   

2.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

3.
The interplay between actin and 10 membrane channel proteins that have been shown to directly bind to actin are reviewed. The 10 membrane channel proteins covered in this review are aquaporin 2 (AQP2), cystic fibrosis transmembrane conductance regulator (CFTR), ClC2, short form of ClC3 (sClC3), chloride intracellular channel 1 (CLIC1), chloride intracellular channel 5 (CLIC5), epithelial sodium channel (ENaC), large-conductance calcium-activated potassium channel (Maxi-K), transient receptor potential vanilloid 4 (TRPV4), and voltage-dependent anion channel (VDAC), with particular attention to AQP2. In regard to AQP2, most reciprocal interactions between actin and AQP2 occur during intracellular trafficking, which are largely mediated through indirect binding. Actin and the actin cytoskeleton work as cables, barriers, stabilizers, and force generators for motility. However, as with ENaC, the effects of actin cytoskeleton on channel gating should be investigated further. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

4.
The paper reviews the evidence for apparent sodium-dependent copper (Cu) uptake across epithelia such as frog skin, fish gills and vertebrate intestine. Potential interactions between Na(+) and Cu during transfer through epithelial cells is rationalized into the major steps of solute transfer: (i) adsorption on to the apical/mucosal membrane, (ii) import in to the cell (iii) intracellular trafficking, and (iv) export from the cell to the blood. Interactions between Na(+) and Cu transport are most likely during steps (i) and (ii). These ions have similar mobilities (lambda) in solution (lambda, Na(+), 50.1; Cu(2+), 53.6 cm(2) Int. ohms(-1) equiv(-1)); consequently, Cu(2+) may compete equally with Na(+) for diffusion to membrane surfaces. We present new data on the Na(+) binding characteristics of the gill surface (gill microenvironment) of rainbow trout. The binding characteristics of Na(+) and Cu(2+) to the external surface of trout gills are similar with saturation of ligands at nanomolar concentrations of solutes. At the mucosal/apical membrane of several epithelia (fish gills, frog skin, vertebrate intestine), there is evidence for both a Cu-specific channel (CTR1 homologues) and Cu leak through epithelial Na(+) channels (ENaC). Cu(2+) slows the amiloride-sensitive short circuit current (I(sc)) in frog skin, suggesting Cu(2+) binding to the amiloride-binding site of ENaC. We present examples of data from the isolated perfused catfish intestine showing that Cu uptake across the whole intestine was reduced by 50% in the presence of 2 mM luminal amiloride, with 75% of the overall inhibition attributed to an amiloride-sensitive region in the middle intestine. Removal of luminal Na(+) produced more variable results, but also reduced Cu uptake in catfish intestine. These data together support Cu(2+) modulation of ENaC, but not competitive entry of Cu(2+) through ENaC. However, in situations where external Na(+) is only a few millimoles (fish gills, frogs in freshwater), Cu(2+) leak through ENaC is possible. CTR1 is a likely route of Cu(2+) entry when external Na(+) is higher (e.g. intestinal epithelia). Interactions between Na(+) and Cu ions during intracellular trafficking or export from the cell are unlikely. However, effects of intracellular chloride on the Cu-ATPase or ENaC indicate that Na(+) might indirectly alter Cu flux. Conversely, Cu ions inhibit basolateral Na(+)K(+)-ATPase and may increase [Na(+)](i).  相似文献   

5.
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.  相似文献   

6.
Epithelial Na(+) channels (ENaC) mediate the transport of sodium (Na) across epithelia in the kidney, gut, and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4 and Nedd4-2, which bind to proline-rich motifs (PY motifs) present in the C-termini of ENaC subunits. Loss of inhibition leads to hypertension. ENaC channels are maintained in the active state by G-protein-coupled receptor kinase 2 (GRK2), an enzyme implicated in the development of essential hypertension. Here, we report that GRK2 interacts not only with ENaC, but also with both Nedd4 and Nedd4-2. Additionally, GRK2 is capable of phosphorylating both Nedd4 and Nedd4-2 at multiple sites. Of possible significance is the phosphorylation of the threonine at position 466 in Nedd4, which is located in the area of the ww3 domain that binds ENaC. These results support and extend the role of GRK2 in sodium transport regulation.  相似文献   

7.
Cyclooxygenase-2 (COX-2) expression is increased by hypertonicity. Therefore we hypothesized that hypertonicity increased PGE(2) can modulate the sodium transporters (Na(+)/K(+)-ATPase: NKA, epithelial sodium channel: ENaC, and sodium hydrogen exchanger: NHE) in M1 cortical collecting duct (CCD) cells. We demonstrated by immunoblotting a 2-fold increase in NKA expression and activity following hypertonic treatment. α-ENaC was also increased, however sgk1, an ENaC activator, decreased in response to hypertonicity. Other CCD sodium transporters (β-ENaC, NHE) were unchanged. Hypertonicity also increased PGE(2) but EP(4) receptor mRNA was unaltered. PGE(2) increased intracellular Na(+) and cAMP production in M1 cells, but PGE(2)-stimulated cAMP response was attenuated by hypertonicity. Overall, PGE(2) had no effect on sodium transporter levels. Since neither COX inhibition nor EP(4) siRNA altered the induction of NKA, we propose that sodium transporter regulation by hypertonicity is independent of PGE(2). Altogether, these data indicate that despite a concomitant increase in PGE(2) production and sodium transporter expression in hypertonicity, both pathways are acting independently of each other.  相似文献   

8.
Summary The regulation of sodium and chloride transport in hen coprodeum by mineralocorticoids was investigated with isolated epithelia under short-circuit conditions. Unidirectional fluxes of Na and Cl were measured by isotopes and modulated by amiloride, theophylline and bumetanide. Hens were maintained either on low-NaCl diet (LS) or on high-NaCl diet (HS). Plasma aldosterone (PA) levels of these groups were measured with radioimmunoassay. A group of HS hens received injections of aldosterone on a 6-hr schedule before experiments. Another group of LS hens was resalinated, and experiments carried out on a 24-hr interval.Salt deprivation stimulated PA levels ninefold, compared to HS hens. Na absorption was stimulated according to previous reports. Electrogenic Cl secretion was elicited by theophylline and partially inhibited by bumetanide. Modulation of PA levels by diet, resalination or aldosterone injection changed the magnitude of electrogenic Cl secretion in parallel between 0.5 eq/cmau2 · hr (HS) and 4 eq/cm2 · hr (LS), with pronounced alteration in tissue resistance.The results demonstrate a new action of aldosterone which besides stimulating Na absorption also directly or indirectly elicits Cl secretion. Evidence is presented for a hormonal adaptation of chloride transport in this epithelium. There was a morphological change of the apical plasma membrane and further experiments will have to clarify the exact cellular nature of this process.  相似文献   

9.
The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a limiting step in sodium reabsorption across distal airway epithelium and controlling mucociliary clearance. ENaC is activated by serine proteases secreted in the extracellular milieu. In cystic fibrosis lungs, high concentrations of secreted neutrophil elastase (NE) are observed. hNE could activate ENaC and contribute to further decreased mucociliary clearance. The aims of this study were (i) to test the ability of an engineered human neutrophil elastase inhibitor (EPI-hNE4) to specifically inhibit the elastase activation of ENaC-mediated amiloride-sensitive currents (I(Na)) and (ii) to examine the effect of elastase on cell surface expression of ENaC and its cleavage pattern (exogenous proteolysis). Oocytes were exposed to hNE (10-100 microg/ml) and/or trypsin (10 microg/ml) for 2-5 min in the presence or absence of EPI-hNE4 (0.7 microm). hNE activated I(Na) 3.6-fold (p < 0.001) relative to non-treated hENaC-injected oocytes. EPI-hNE4 fully inhibited hNE-activated I(Na) but had no effect on trypsin- or prostasin-activated I(Na). The co-activation of I(Na) by hNE and trypsin was not additive. Biotinylation experiments revealed that cell surface gamma ENaC (but not alpha or beta ENaC) exposed to hNE for 2 min was cleaved (as a 67-kDa fragment) and correlated with increased I(Na). The elastase-induced exogenous proteolysis pattern is distinct from the endogenous proteolysis pattern induced upon preferential assembly, suggesting a causal relationship between gamma ENaC cleavage and ENaC activation, taking place at the plasma membrane.  相似文献   

10.
Vas deferens is a conduit for sperm and fluid from the epididymis to the urethra. The duct is surrounded by a thick smooth muscle layer. To map the actin cytoskeleton of the duct and its epithelium, we reacted sections of the proximal and distal regions with fluorescent phalloidin. Confocal microscopic imaging showed that the cylinder‐shaped epithelium of the proximal region has a thick apical border of actin filaments that form microvilli. The epithelium of the distal region is covered with tall stereocilia (13–18 µm) that extend from the apical border into the lumen. In both regions, the lateral and basal cell borders showed a thin lining of actin cytoskeleton. The vas deferens epithelium contains various channels to regulate the fluid composition in the lumen. We mapped the localization of the epithelial sodium channel (ENaC), aquaporin‐9 (AQP9), and cystic fibrosis transmembrane conductance regulator (CFTR) in the rat and mouse vas deferens. ENaC and AQP9 immunofluorescence were localized on the luminal surface and stereocilia and also in the basal and smooth muscle layers. CFTR immunofluorescence appeared only on the luminal surface and in smooth muscle layers. The localization of all three channels on the apical surface of the columnar epithelial cells provides clear evidence that these channels are involved concurrently in the regulation of fluid and electrolyte balance in the lumen of the vas deferens. ENaC allows the flow of Na+ ions from the lumen into the cytoplasm, and the osmotic gradient generated provides the driving force for the passive flow of water through AQP channels.  相似文献   

11.
Lithium (Li) administration causes deranged expression and function of renal aquaporins and sodium channels/transporters resulting in nephrogenic diabetes insipidus (NDI). Extracellular nucleotides (ATP/ADP/UTP), via P2 receptors, regulate these transport functions. We tested whether clopidogrel bisulfate (CLPD), an antagonist of ADP-activated P2Y12 receptor, would affect Li-induced alterations in renal aquaporins and sodium channels/transporters. Adult mice were treated for 14 days with CLPD and/or Li and euthanized. Urine and kidneys were collected for analysis. When administered with Li, CLPD ameliorated polyuria, attenuated the rise in urine prostaglandin E2 (PGE2), and resulted in significantly higher urinary arginine vasopressin (AVP) and aldosterone levels as compared to Li treatment alone. However, urine sodium excretion remained elevated. Semi-quantitative immunoblotting revealed that CLPD alone increased renal aquaporin 2 (AQP2), Na-K-2Cl cotransporter (NKCC2), Na-Cl cotransporter (NCC), and the subunits of the epithelial Na channel (ENaC) in medulla by 25–130 %. When combined with Li, CLPD prevented downregulation of AQP2, Na-K-ATPase, and NKCC2 but was less effective against downregulation of cortical α- or γ-ENaC (70 kDa band). Thus, CLPD primarily attenuated Li-induced downregulation of proteins involved in water conservation (AVP-sensitive), with modest effects on aldosterone-sensitive proteins potentially explaining sustained natriuresis. Confocal immunofluorescence microscopy revealed strong labeling for P2Y12-R in proximal tubule brush border and blood vessels in the cortex and less intense labeling in medullary thick ascending limb and the collecting ducts. Therefore, there is the potential for CLPD to be directly acting at the tubule sites to mediate these effects. In conclusion, P2Y12-R may represent a novel therapeutic target for Li-induced NDI.  相似文献   

12.
Links between epithelial ion channels and chronic obstructive pulmonary diseases (COPD) are emerging through animal model and in vitro studies. However, clinical correlations between fluid-regulating channel proteins and lung function in COPD remain to be elucidated. To quantitatively measure epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 5 (AQP5) proteins in human COPD lungs and to analyze the correlation with declining lung function, quantitative western blots were used. Spearman tests were performed to identify correlations between channel proteins and lung function. The expression of α and β ENaC subunits was augmented and inversely associated with lung function. In contrast, both total and alveolar type I (ATI) and II (ATII)-specific CFTR proteins were reduced. The expression level of CFTR proteins was associated with FEV1 positively. Abundance of AQP5 proteins and extracellular superoxide dismutase (SOD3) was decreased and correlated with spirometry test results and gas exchange positively. Furthermore, these channel proteins were significantly associated with severity of disease. Our study demonstrates that expression of ENaC, AQP5, and CFTR proteins in human COPD lungs is quantitatively associated with lung function and severity of COPD. These apically located fluid-regulating channels may thereby serve as biomarkers and potent druggable targets of COPD.  相似文献   

13.
The epithelial sodium channel (ENaC) plays an important role in transepithelial Na(+) absorption; hence its function is essential for maintaining Na(+) and fluid homeostasis and regulating blood pressure. Insulin is one of the hormones that regulates activity of ENaC. In this study, we investigated the contribution of two related protein kinases, Akt (also known as protein kinase B) and the serum- and glucocorticoid-dependent kinase (Sgk), on insulin-induced ENaC activity in Fisher rat thyroid cells expressing ENaC. Overexpression of Akt1 or Sgk1 significantly increased ENaC activity, whereas expression of a dominant-negative construct of Akt1, Akt1(K179M), decreased basal activity of ENaC. Inhibition of the endogenous expression of Akt1 and Sgk1 by short interfering RNA not only inhibited ENaC but also disrupted the stimulatory effect on ENaC of insulin and of the downstream effectors of insulin, phosphatidylinositol 3-kinase and PDK1. Conversely, overexpression of Akt1 or Sgk1 increased expression of ENaC at the cell membrane and overcame the inhibitory effect of Nedd4-2 on ENaC. Furthermore, mutation of consensus phosphorylation sites on Nedd4-2 for Akt1 and Sgk1, Ser(342) and Ser(428), completely abolished the inhibitory effect of Sgk1 and Akt1 on Nedd4-2 action. Together these data suggest that both Akt and Sgk are components of an insulin signaling pathway that increases Na(+) absorption by up-regulating membrane expression of ENaC via a regulatory system that involves inhibition of Nedd4-2.  相似文献   

14.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

15.
The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na(+) absorption across the apical membranes of several absorptive epithelia. The rate of Na(+) absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I(Na)). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the alpha-, beta-, and gamma-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I(Na), and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I(Na) to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I(Na). Individually substituting C terminus-truncated alpha-, beta-, or gamma-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I(Na), and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I(Na). C terminus truncation or disruption of the C terminus beta-subunit PY motif increases I(Na) by interfering with ENaC endocytosis. In contrast to subunit truncation, a beta-ENaC PY mutation did not relieve S1A inhibition of I(Na), suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na(+) transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.  相似文献   

16.
In renal epithelial A6 cells, aldosterone applied for 24 h increased the transepithelial Cl- secretion over 30-fold due to activation of the Na+/K+/2Cl- cotransporter and stimulated the transepithelial Na+ absorption, activity of epithelial Na+ channel (ENaC), and alpha-ENaC mRNA expression. The stimulatory action of aldosterone on the transepithelial Na+ absorption, ENaC activity, and alpha-ENaC mRNA expression was diminished by 24h-pretreatment with quercetin (an activator of Na+/K+/2Cl- cotransporter participating in Cl- entry into the cytosolic space) or 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB) (a blocker of Cl- channel participating in Cl- release from the cytosolic space), while 24h-pretreatment with bumetanide (a blocker of Na+/K+/2Cl- cotransporter) enhanced the stimulatory action of aldosterone on transepithelial Na+ absorption. On the other hand, under the basal (aldosterone-unstimulated) condition, quercetin, NPPB or bumetanide had no effect on transepithelial Na+ absorption, activity of ENaC or alpha-ENaC mRNA expression. These observations suggest that although aldosterone shows overall its stimulatory action on ENaC (transepithelial Na+ transport), aldosterone has an inhibitory action on ENaC (transepithelial Na+ transport) via activation of the Na+/K+/2Cl- cotransporter, and that modification of activity of Cl- transporter/channel participating in the transepithelial Cl- secretion influences the aldosterone-stimulated ENaC (transepithelial Na+ transport).  相似文献   

17.
The epithelial Na+ channel (ENaC) is the apical entry pathway for Na+ in many Na+-reabsorbing epithelia. ENaC is a heterotetrameric protein composed of homologous alpha, beta, and gamma subunits. Mutations in ENaC cause severe hypertension or salt wasting in humans; and consequently, ENaC activity is tightly controlled. According to the concept of Na+ self-inhibition, the extracellular Na+ ion itself can reduce ENaC activity. The molecular basis for Na+ self-inhibition is unknown. Here, we describe cloning of a new ENaC subunit from Xenopus laevis (epsilonxENaC). epsilonxENaC can replace alphaxENaC and formed functional, highly selective, amiloride-sensitive Na+ channels when coexpressed with betaxENaC and gammaxENaC. Channels containing epsilonxENaC showed strong inhibition by extracellular Na+. This Na+ self-inhibition was significantly slower than for alphaxENaC-containing channels. Using site-directed mutagenesis, we show that the proximal part of the large extracellular domain controls the speed of self-inhibition. This suggests that this region is involved in conformational changes during Na+ self-inhibition.  相似文献   

18.
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.  相似文献   

19.
20.
Multi-system pseudohypoaldosteronism (PHA) is a rare syndrome of aldosterone unresponsiveness characterized by symptoms of severe salt-losing caused by mutations in one of the genes that encode alpha, beta or gamma subunit of epithelial sodium channels (ENaC). We examined long-term changes in the renin-aldosterone response in patients with different mutations. Four PHA patients were followed-up for 7-22 years. Patient A with a heterozygous Gly327Cys missense mutation in alphaENaC is a mild case and patients B, C and D are severe cases. Two additional patients with renal PHA served as controls. In patient A, serum aldosterone and plasma renin activity (PRA) decreased with age, PRA reaching near normal values at age 11. In contrast, patients B-D showed a positive correlation between age and aldosterone (r>0.86 for all). In patient B with Arg508 stop mutation, aldosterone reached 166nmol/L at age 19 (>300-fold higher than normal). Urinary Na/K ratios normalized gradually with age in all patients. Growth curves of the patients were reflective of the severity of PHA and compliance with salt therapy. Functional expression studies in oocytes showed that ENaC with alphaGly327Cys mutation, as observed in patient A, showed nearly 40% activity of the wild type ENaC. In contrast, stop mutation as in patient B reduces ENaC activity to less than 5% of the normal. Our results demonstrate distinct genotype-phenotype relationships in multi-system PHA patients. The degree of ENaC function impairment affects differently the renin-aldosterone system and urinary Na/K ratios. The differences observed are age-dependent and PHA form specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号