首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Developmental cell》2022,57(5):610-623.e8
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

2.
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.  相似文献   

3.
Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament, and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate.  相似文献   

4.
MOTIVATION: Signaling events that direct mouse embryonic stem (ES) cell self-renewal and differentiation are complex and accordingly difficult to understand in an integrated manner. We address this problem by adapting a Bayesian network learning algorithm to model proteomic signaling data for ES cell fate responses to external cues. Using this model we were able to characterize the signaling pathway influences as quantitative, logic-circuit type interactions. Our experimental dataset includes measurements for 28 signaling protein phosphorylation states across 16 different factorial combinations of cytokine and matrix stimuli as reported previously. RESULTS: The Bayesian network modeling approach allows us to uncover previously reported signaling activities related to mouse ES cell self-renewal, such as the roles of LIF and STAT3 in maintaining undifferentiated ES cell populations. Furthermore, the network predicts novel influences such as between ERK phosphorylation and differentiation, or RAF phosphorylation and differentiated cell proliferation. Visualization of the influences detected by the Bayesian network provides intuition about the underlying physiology of the signaling pathways. We demonstrate that the Bayesian networks can capture the linear, nonlinear and multistate logic interactions that connect extracellular cues, intracellular signals and consequent cell functional responses.  相似文献   

5.
6.
7.
Wnt signaling plays important roles in skeletal development. However, the activation and function of canonical Wnt signaling in joint development remains unclear. We analyzed the lineage identity and developmental changes of the Wnt-responsive cells during synovial joint formation as well as adulthood in the Wnt signaling reporter TOPgal transgenic mice. At embryonic day (E) 12.5, we found that the TOPgal was inactivated in the presumptive joint forming interzone, but it was intensively activated in the cartilage anlage of developing long bones and digits. At E14.5, the TOPgal activity was found in a subgroup of the articular chondrocyte lineage cells, which were co-immunolabeled with Doublecortin intensively and with Vinculin weakly. At E18.5, the TOPgal/Doublecortin co-immunolabeled cells were found in the superficial layer of the developing articular cartilage. During postnatal development, the TOPgal(+) articular chondrocytes were abundant at P7 and decreased from P10. A small number of TOPgal(+) articular chondrocytes were also found in adult joints. Our study suggests an age- and lineage-specific role of canonical Wnt signaling in joint development and maintenance.  相似文献   

8.
Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.  相似文献   

9.
Wnt signaling and stem cell control   总被引:2,自引:0,他引:2  
Nusse R 《Cell research》2008,18(5):523-527
  相似文献   

10.
11.
12.
Formation of mesoderm from the pluripotent epiblast depends upon canonical Wnt/beta-catenin signaling, although a precise molecular basis for this requirement has not been established. To develop a robust model of this developmental transition, we examined the role of Wnt signaling during the analogous stage of embryonic stem cell differentiation. We show that the kinetics of Wnt ligand expression and pathway activity in vitro mirror those found in vivo. Furthermore, inhibition of this endogenous Wnt signaling abrogates the functional competence of differentiating ES cells, reflected by their failure to generate Flk1(+) mesodermal precursors and subsequent mature mesodermal lineages. Microarray analysis at various times during early differentiation reveal that mesoderm- and endoderm-associated genes fail to be induced in the absence of Wnt signaling, indicating a lack of germ layer induction that normally occurs during gastrulation in vivo. The earliest genes displaying Wnt-dependent expression, however, were those expressed in vivo in the primitive streak. Using an inducible form of stabilized beta-catenin, we find that Wnt activity, although required, does not autonomously promote primitive streak-associated gene expression in vitro. Our results suggest that Wnt signaling functions in this model system to regulate the thresholds or stability of responses to other effector pathways and demonstrate that differentiating ES cells represent a useful model system for defining complex regulatory interactions underlying primary germ layer induction.  相似文献   

13.
14.
15.
Stem cells, which can self-renew and generate differentiated cells, have been shown to be controlled by surrounding microenvironments or niches in several adult tissues. However, it remains largely unknown what constitutes a functional niche and how niche formation is controlled. In the Drosophila ovary, germline stem cells (GSCs), which are adjacent to cap cells and two other cell types, have been shown to be maintained in the niche. In this study, we show that Notch signaling controls formation and maintenance of the GSC niche and that cap cells help determine the niche size in the Drosophila ovary. Expanded Notch activation causes the formation of more cap cells and bigger niches, which support more GSCs, whereas compromising Notch signaling during niche formation decreases the cap cell number and niche size and consequently the GSC number. Furthermore, the niches located away from their normal location can still sufficiently sustain GSC self-renewal by maintaining high local BMP signaling and repressing bam as in normal GSCs. Finally, loss of Notch function in adults results in rapid loss of the GSC niche, including cap cells and thus GSCs. Our results indicate that Notch signaling is important for formation and maintenance of the GSC niche, and that cap cells help determine niche size and function.  相似文献   

16.
17.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.  相似文献   

18.
《Cell Stem Cell》2021,28(8):1457-1472.e12
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

19.
Wnt signaling pathways control lineage specification in vertebrate embryos and regulate pluripotency in embryonic stem (ES) cells, but how the balance between progenitor self-renewal and differentiation is achieved during axis specification and tissue patterning remains highly controversial. The context- and stage-specific effects of the different Wnt pathways produce complex and sometimes opposite outcomes that help to generate embryonic cell diversity. Although the results of recent studies of the Wnt/β-catenin pathway in ES cells appear to be surprising and controversial, they converge on the same conserved mechanism that leads to the inactivation of TCF3-mediated repression.  相似文献   

20.
《Cell Stem Cell》2021,28(10):1838-1850.e10
  1. Download : Download high-res image (245KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号