共查询到20条相似文献,搜索用时 15 毫秒
1.
Murata T Delprato A Ingmundson A Toomre DK Lambright DG Roy CR 《Nature cell biology》2006,8(9):971-977
The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport. 相似文献
2.
Genetic variation generates diversity in all kingdoms of life. The corresponding mechanisms can also be harnessed for laboratory studies of fundamental cellular processes. Here we report that oligonucleotides (oligos) generate mutations on the Legionella pneumophila chromosome by a mechanism that requires homologous DNA, but not RecA, RadA or any known phage recombinase. Instead we propose that DNA replication contributes, as oligo-induced mutagenesis required ≥ 21 nucleotides of homology, was strand-dependent, and was most efficient in exponential phase. Mutagenesis did not require canonical 5' phosphate or 3' hydroxyl groups, but the primosomal protein PriA and DNA Pol I contributed. After electroporation, oligos stimulated excision of 2.1 kb of chromosomal DNA or insertion of 18 bp, and non-homologous flanking sequences were also processed. We exploited this endogenous activity to generate chromosomal deletions and to insert an epitope into a chromosomal coding sequence. Compared with Escherichia coli, L. pneumophila encodes fewer canonical single-stranded exonucleases, and the frequency of mutagenesis increased substantially when either its RecJ and ExoVII nucleases were inactivated or the oligos modified by nuclease-resistant bases. In addition to genetic engineering, oligo-induced mutagenesis may have evolutionary implications as a mechanism to incorporate divergent DNA sequences with only short regions of homology. 相似文献
3.
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion. 相似文献
4.
Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth 总被引:1,自引:5,他引:1
Bacterial pathogens often subvert eukaryotic cellular processes in order to establish a replicative niche and evade host immunity. Inhibition of phagosome lysosome fusion is a strategy used by several intracellular bacteria that grow within mammalian cells. It was shown recently that Legionella pneumophila possesses a cytolytic activity that results from the insertion of pores in the macrophage membrane upon contact, and that this activity requires the dot/icm gene products, which are necessary for intracellular growth and phagosome trafficking. Other bacteria that inhibit phagosome lysosome fusion, such as Mycobacterium tuberculosis , demonstrate similar cytolytic activities, which suggests that formation of pores in the phagosome membrane may account for the defects observed in phagosome trafficking. In this study, we identify a new class of L. pneumophila mutant that retains the pore-forming activity found in virulent bacteria, but is defective in phagosome lysosome fusion inhibition and intracellular growth. These data indicate that cytolytic activity is not sufficient for L. pneumophila -induced alterations in phagosome trafficking. Rather, the pore may be a vehicle that facilitates delivery of bacterial-derived effector molecules to the host cell cytoplasm. 相似文献
5.
Ivy Y. W. Chung Lei Li Oleg Tyurin Alla Gagarinova Raissa Wibawa Pengfei Li Elizabeth L. Hartland Miroslaw Cygler 《Protein science : a publication of the Protein Society》2021,30(5):940
Legionella pneumophila is an intracellular pathogen that causes Legionnaire''s disease in humans. This bacterium can be found in freshwater environments as a free‐living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella‐containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER‐derived secretory vesicles and membranes forming the Legionella‐containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α‐helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C‐terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C‐terminal sequence C409WTSFCGLF417. Yeast‐two‐hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies. 相似文献
6.
McNew JA Weber T Parlati F Johnston RJ Melia TJ Söllner TH Rothman JE 《The Journal of cell biology》2000,150(1):105-117
Is membrane fusion an essentially passive or an active process? It could be that fusion proteins simply need to pin two bilayers together long enough, and the bilayers could do the rest spontaneously. Or, it could be that the fusion proteins play an active role after pinning two bilayers, exerting force in the bilayer in one or another way to direct the fusion process. To distinguish these alternatives, we replaced one or both of the peptidic membrane anchors of exocytic vesicle (v)- and target membrane (t)-SNAREs (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor) with covalently attached lipids. Replacing either anchor with a phospholipid prevented fusion of liposomes by the isolated SNAREs, but still allowed assembly of trans-SNARE complexes docking vesicles. This result implies an active mechanism; if fusion occurred passively, simply holding the bilayers together long enough would have been sufficient. Studies using polyisoprenoid anchors ranging from 15–55 carbons and multiple phospholipid-containing anchors reveal distinct requirements for anchors of v- and t-SNAREs to function: v-SNAREs require anchors capable of spanning both leaflets, whereas t-SNAREs do not, so long as the anchor is sufficiently hydrophobic. These data, together with previous results showing fusion is inhibited as the length of the linker connecting the helical bundle-containing rod of the SNARE complex to the anchors is increased (McNew, J.A., T. Weber, D.M. Engelman, T.H. Sollner, and J.E. Rothman, 1999. Mol. Cell. 4:415–421), suggests a model in which one activity of the SNARE complex promoting fusion is to exert force on the anchors by pulling on the linkers. This motion would lead to the simultaneous inward movement of lipids from both bilayers, and in the case of the v-SNARE, from both leaflets. 相似文献
7.
The DrrA protein of Legionella pneumophila is involved in mistargeting of endoplasmic reticulum‐derived vesicles to Legionella‐containing vacuoles through recruitment of the small GTPase Rab1. To this effect, DrrA binds specifically to phosphatidylinositol 4‐phosphate (PtdIns(4)P) lipids on the cytosolic surface of the phagosomal membrane shortly after infection. In this study, we present the atomic structure of the PtdIns(4)P‐binding domain of a protein (DrrA) from a human pathogen. A detailed kinetic investigation of its interaction with PtdIns(4)P reveals that DrrA binds to this phospholipid with, as yet unprecedented, high affinity, suggesting that DrrA can sense a very low abundance of the lipid. 相似文献
8.
The Legionella pneumophila protein AnkX that is injected into infected cells by a Type IV secretion system transfers a phosphocholine group from CDP-choline to a serine in the Rab1 and Rab35 GTPase Switch II regions. We show here that the consequences of phosphocholination on the interaction of Rab1/Rab35 with various partner proteins are quite distinct. Activation of phosphocholinated Rabs by GTP/GDP exchange factors (GEFs) and binding to the GDP dissociation inhibitor (GDI) are strongly inhibited, whereas deactivation by GTPase activating proteins (GAPs) and interactions with Rab-effector proteins (such as LidA and MICAL-3) are only slightly inhibited. We show that the Legionella protein lpg0696 has the ability to remove the phosphocholine group from Rab1. We present a model in which the action of AnkX occurs as an alternative to GTP/GDP exchange, stabilizing phosphocholinated Rabs in membranes in the GDP form because of loss of GDI binding ability, preventing interactions with cellular GTPase effectors, which require the GTP-bound form. Generation of the GTP form of phosphocholinated Rab proteins cannot occur due to loss of interaction with cellular GEFs. 相似文献
9.
After ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella. Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10-30 kDa species released into culture supernatants by Type IV secretion-competent Legionella, as judged by the macrophages' processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella-permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases. 相似文献
10.
《生物化学与生物物理学报:生物膜》2015,1848(2):742-751
Lysoplasmalogenase catalyzes hydrolytic cleavage of the vinyl-ether bond of lysoplasmalogen to yield fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. We recently purified lysoplasmalogenase from rat liver microsomes and identified the protein as TMEM86B, an integral membrane protein that is a member of the YhhN family found in numerous species of eukaryotes and bacteria. To test the hypothesis that bacterial YhhN proteins also function as lysoplasmalogenase enzymes, we cloned the Lpg1991 gene of Legionella pneumophila, which encodes a 216 amino acid YhhN protein (LpYhhN), and expressed it in Escherichia coli as a C-terminal-GFP-His8-fusion. Membranes were solubilized and the fusion protein was purified by nickel-affinity chromatography, cleaved with Tobacco Etch Virus protease, and subjected to a reverse nickel column to purify the un-tagged LpYhhN. Both the fusion protein and un-tagged LpYhhN exhibit robust lysoplasmalogenase activity, cleaving the vinyl-ether bond of lysoplasmalogen with a Vmax of 12 µmol/min/mg protein and a Km of 45 μM. LpYhhN has no activity on diradyl plasmalogen, 1-alkenyl-glycerol, and monoacylglycerophospho-ethanolamine or monoacylglycerophospho-choline; the pH optimum is 6.5–7.0. These properties are very similar to mammalian TMEM86B. Sequence analysis suggests that YhhN proteins contain eight transmembrane helices, an N-in/C-in topology, and about 5 highly conserved amino acid residues that may form an active site. This work is the first to demonstrate a function for a bacterial YhhN protein, as a vinyl ether bond hydrolase specific for lysoplasmalogen. Since L. pneumophila does not contain endogenous plasmalogens, we hypothesize that LpYhhN may serve to protect the bacterium from lysis by lysoplasmalogen derived from plasmalogens of the host. 相似文献
11.
Gerhardt H Walz MJ Faigle M Northoff H Wolburg H Neumeister B 《FEMS microbiology letters》2000,192(1):145-152
In this report, we investigate the intracellular fate of selected members of the genus Legionella within the monocytic cell line Mono Mac 6 cells. By means of electron microscopy and immunocytochemistry, we could show that Legionella pneumophila as well as Legionella longbeachae are able to induce ribosome-studded phagosomes which associate with the rough endoplasmic reticulum (RER), whereas Legionella micdadei remains to be located within smooth phagosomes but also shows signs of RER association. In addition, we could demonstrate a remarkable correlation between the phagosome type and the morphological phenotype of intracellular bacteria: within ribosome-studded phagosomes, bacteria generally lacked the outer coat of low electron density whereas bacteria within the smooth phagosomes still possessed this outer coat. The virulence factors responsible for inhibition of phagosome maturation and their distribution within the genus Legionella as well as the biological significance of the morphological difference of bacteria within smooth and ER-associated phagosomes remain to be investigated. 相似文献
12.
Tzivelekidis T Jank T Pohl C Schlosser A Rospert S Knudsen CR Rodnina MV Belyi Y Aktories K 《PloS one》2011,6(12):e29525
Legionella pneumophila, which is the causative organism of Legionnaireś disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (lgt''s), which selectively modify eukaryotic elongation factor (eEF) 1A at Ser-53 in the GTP binding domain. Glucosylation results in inhibition of protein synthesis. Here we show that in vitro glucosylation of yeast and mouse eEF1A by Lgt3 in the presence of the factors Phe-tRNAPhe and GTP was enhanced 150 and 590-fold, respectively. The glucosylation of eEF1A catalyzed by Lgt1 and 2 was increased about 70-fold. By comparison of uncharged tRNA with two distinct aminoacyl-tRNAs (His-tRNAHis and Phe-tRNAPhe) we could show that aminoacylation is crucial for Lgt-catalyzed glucosylation. Aminoacyl-tRNA had no effect on the enzymatic properties of lgt''s and did not enhance the glucosylation rate of eEF1A truncation mutants, consisting of the GTPase domain only or of a 5 kDa peptide covering Ser-53 of eEF1A. Furthermore, binding of aminoacyl-tRNA to eEF1A was not altered by glucosylation. Taken together, our data suggest that the ternary complex, consisting of eEF1A, aminoacyl-tRNA and GTP, is the bona fide substrate for lgt''s. 相似文献
13.
14.
Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. 总被引:16,自引:0,他引:16 下载免费PDF全文
The baculovirus gp64 envelope glycoprotein is a major component of the envelope of the budded virus (BV) and is involved in BV entry into the host cell by endocytosis. To determine whether gp64 alone was sufficient to mediate membrane fusion, the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus gp64 protein was transiently expressed in uninfected insect cells. Cells expressing the baculovirus gp64 protein were examined for membrane fusion activity by using a syncytium formation assay under various conditions of exposure to low pH. Cells expressing the gp64 protein mediated membrane fusion and syncytium formation in a pH-dependent manner. A pH of 5.5 or lower was required to induce membrane fusion. In addition, exposure of gp64-expressing cells to low pH for as little as 5 s was sufficient to induce gp64-mediated syncytium formation. These studies provide direct evidence that gp64 is a pH-dependent membrane fusion protein and suggest that gp64 is the protein responsible for fusion of the virion envelope with the endosome membrane during BV entry into the host cell by endocytosis. 相似文献
15.
S V Spitsyn A L Barkhatova OI E I Drobyshevskaia Iu F Bely? I S Tartakovski? 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1989,(10):83-87
The fusion of spleen cells, taken from BALB/c mice immunized with the purified preparation of L. pneumophila cytolysin, with cells Sp2/0 and NP has been carried out. As a result, hybridoma cells producing IgG1, IgG3 and IgM antibodies to this protein have been obtained. All monoclonal antibodies (McAb) thus obtained react with L. pneumophila strain lysates in the precipitation test, while IgG3 and IgM antibodies react with erythrocyte diagnostic agents prepared from the lysate of L. pneumophila cells in the hemagglutination test. In the Western blot assay, McAb react with the 37 KD protein (cytolysin) and a number of other proteins from L. pneumophila cultures and L. pneumophila cell lysate, but do not react with the species-specific protein with a molecular weight of 29 KD, contained in the outer membrane of L. pneumophila, as well as with other species: L. bozemanii, L. dumoffii, L. longbeachae, L. micdadei. The possibility of using these McAb conjugated with FITC and peroxidase for the rapid diagnosis of Legionella infection is shown. 相似文献
16.
Huang L Boyd D Amyot WM Hempstead AD Luo ZQ O'Connor TJ Chen C Machner M Montminy T Isberg RR 《Cellular microbiology》2011,13(2):227-245
Legionella pneumophila promotes intracellular growth by moving bacterial proteins across membranes via the Icm/Dot system. A strategy was devised to identify large numbers of Icm/Dot translocated proteins, and the resulting pool was used to identify common motifs that operate as recognition signals. The 3' end of the sidC gene, which encodes a known translocated substrate, was replaced with DNA encoding 200 codons from the 3' end of 442 potential substrate-encoding genes. The resulting hybrid proteins were then tested in a high throughput assay, in which translocated SidC antigen was detected by indirect immunofluorescence. Among translocated substrates, regions of 6-8 residues called E Blocks were identified that were rich in glutamates. Analysis of SidM/DrrA revealed that loss of three Glu residues, arrayed in a triangle on an α-helical surface, totally eliminated translocation of a reporter protein. Based on this result, a second strategy was employed to identify Icm/Dot substrates having carboxyl terminal glutamates. From the fusion assay and the bioinformatic queries, carboxyl terminal sequences from 49 previously unidentified proteins were shown to promote translocation into target cells. These studies indicate that by analysing subsets of translocated substrates, patterns can be found that allow predictions of important motifs recognized by Icm/Dot. 相似文献
17.
Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes 下载免费PDF全文
Jens Jäger Susanne Keese Manfred Roessle Michael Steinert Andra B. Schromm 《Cellular microbiology》2015,17(5):607-620
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane‐bound compartment termed Legionella‐containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small‐angle X‐ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co‐incubation experiments showed a dose‐ and time‐dependent binding of fluorophore‐labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4°C. Purified OMVs induced tumour necrosis factor‐α production in human macrophages at concentrations starting at 300 ng ml?1. Experiments on HEK293‐TLR2 and TLR4/MD‐2 cell lines demonstrated a dominance of TLR2‐dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells. 相似文献
18.
The causative agent of Legionnaires' disease, Legionella pneumophila, employs the intracellular multiplication (Icm)/defective organelle trafficking (Dot) type IV secretion system (T4SS) to upregulate phagocytosis and to establish a replicative vacuole in amoebae and macrophages. Legionella-containing vacuoles (LCVs) do not fuse with endosomes but recruit early secretory vesicles. Here we analyze the role of host cell phosphoinositide (PI) metabolism during uptake and intracellular replication of L. pneumophila. Genetic and pharmacological evidence suggests that class I phosphatidylinositol(3) kinases (PI3Ks) are dispensable for phagocytosis of wild-type L. pneumophila but inhibit intracellular replication of the bacteria and participate in the modulation of the LCV. Uptake and degradation of an icmT mutant strain lacking a functional Icm/Dot transporter was promoted by PI3Ks. We identified Icm/Dot-secreted proteins which specifically bind to phosphatidylinositol(4) phosphate (PI(4)P) in vitro and preferentially localize to LCVs in the absence of functional PI3Ks. PI(4)P was found to be present on LCVs using as a probe either an antibody against PI(4)P or the PH domain of the PI(4)P-binding protein FAPP1 (phosphatidylinositol(4) phosphate adaptor protein-1). Moreover, the presence of PI(4)P on LCVs required a functional Icm/Dot T4SS. Our results indicate that L. pneumophila modulates host cell PI metabolism and exploits the Golgi lipid second messenger PI(4)P to anchor secreted effector proteins to the LCV. 相似文献
19.
Legionella pneumophila is an intracellular pathogen that replicates in a unique vacuole that avoids endocytic maturation. Previous studies have shown host vesicles attached to the L. pneumophila-containing vacuole (LCV) minutes after uptake. Here we examine the origin and content of these vesicles by electron microscopy (EM). Our data demonstrate that the attached vesicles are derived from endoplasmic reticulum (ER) based the presence of the resident ER proteins glucose-6-phosphatase, protein disulphide isomerase (PDI) and proteins having the ER-retention signal lysine-aspartic acid-glutamic acid-leucine (KDEL). After tethering occurred, ER markers inside of attached vesicles were delivered into the lumen of the LCV, indicating ER fusion. Treatment of cells with brefeldin A did not interfere with the attachment of ER vesicles with the LCV, suggesting that tethering of these vesicles does not require activities mediated by ADP-ribosylation factor (ARF). ER vesicles were not tethered to the LCV in cells producing the Sar1H79G protein, indicating that vesicles produced by the Sar1/CopII system are necessary for vesicle attachment. From these data we conclude that formation of the organelle that supports L. pneumophila replication is a two-stage process that involves remodelling of the LCV by early secretory vesicles produced by the Sar1/CopII system, followed by attachment and fusion of ER. 相似文献
20.
Isolation and characterization of the Legionella pneumophila outer membrane. 总被引:13,自引:8,他引:13 下载免费PDF全文
A whole cell lysate of Legionella pneumophila was fractionated into five membrane fractions by sucrose gradient centrifugation. Membranes were characterized by enzymatic, chemical, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Two forms of cytoplasmic membrane (CM-1, CM-2), a band of intermediate density (IM), and two forms of outer membrane (OM-1, OM-2) were detected. The CM-1 fraction was the purest form of cytoplasmic membrane, and fraction CM-2 was primarily cytoplasmic membrane associated with small amounts of peptidoglycan. The IM, CM-1, and CM-2 fractions were enriched in peptidoglycan, and the amount of carbohydrate and 2-keto-3-deoxyoctonic acid was not appreciably greater in outer membrane relative to cytoplasmic membrane. Phosphatidylethanolamine and phosphatidylcholine were found to be the major phospholipids in the membrane fractions. The major outer membrane proteins had molecular sizes of 29,000 and 33,000 daltons and were both modified by heating. The 29,000-dalton protein was tightly associated with the peptidoglycan and was equally distributed in the IM, OM-1, and OM-2. 相似文献