首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins. Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function, however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to functional compartmentalization in the inner membrane of mitochondria.  相似文献   

2.
Metazoan development involves a myriad of dynamic cellular processes that require cytoskeletal function. Nonmuscle myosin II plays essential roles in embryonic development; however, knowledge of its role in post-embryonic development, even in model organisms such as Drosophila melanogaster, is only recently being revealed. In this study, truncation alleles were generated and enable the conditional perturbation, in a graded fashion, of nonmuscle myosin II function. During wing development they demonstrate novel roles for nonmuscle myosin II, including in adhesion between the dorsal and ventral wing epithelial sheets; in the formation of a single actin-based wing hair from the distal vertex of each cell; in forming unbranched wing hairs; and in the correct positioning of veins and crossveins. Many of these phenotypes overlap with those observed when clonal mosaic analysis was performed in the wing using loss of function alleles. Additional requirements for nonmuscle myosin II are in the correct formation of other actin-based cellular protrusions (microchaetae and macrochaetae). We confirm and extend genetic interaction studies to show that nonmuscle myosin II and an unconventional myosin, encoded by crinkled (ck/MyoVIIA), act antagonistically in multiple processes necessary for wing development. Lastly, we demonstrate that truncation alleles can perturb nonmuscle myosin II function via two distinct mechanisms—by titrating light chains away from endogenous heavy chains or by recruiting endogenous heavy chains into intracellular aggregates. By allowing myosin II function to be perturbed in a controlled manner, these novel tools enable the elucidation of post-embryonic roles for nonmuscle myosin II during targeted stages of fly development.  相似文献   

3.
Protein kinases in the Cot-1/Orb6/Ndr/Warts family are important regulators of cell morphogenesis and proliferation. Cbk1p, a member of this family in Saccharomyces cerevisiae, has previously been shown to be required for normal morphogenesis in vegetatively growing cells and in haploid cells responding to mating pheromone. A mutant of PAG1, a novel gene in S. cerevisiae, displayed defects similar to those of cbk1 mutants. pag1 and cbk1 mutants share a common set of suppressors, including the disruption of SSD1, a gene encoding an RNA binding protein, and the overexpression of Sim1p, an extracellular protein. These genetic results suggest that PAG1 and CBK1 act in the same pathway. Furthermore, we found that Pag1p and Cbk1p localize to the same polarized peripheral sites and that they coimmunoprecipitate with each other. Pag1p is a conserved protein. The homologs of Pag1p in other organisms are likely to form complexes with the Cbk1p-related kinases and function with those kinases in the same biological processes.  相似文献   

4.
Proteolytic processing of amyloid precursor protein generates beta-amyloid (Abeta) peptides that are deposited in senile plaques in brains of aged individuals and patients with Alzheimer's disease. Presenilins (PS1 and PS2) facilitate the final step in Abeta production, the intramembranous gamma-secretase cleavage of amyloid precursor protein. Biochemical and pharmacological evidence support a catalytic or accessory role for PS1 in gamma-secretase cleavage, as well as a regulatory role in select membrane protein trafficking. In this report, we demonstrate that PS1 is required for maturation and cell surface accumulation of nicastrin, an integral component of the multimeric gamma-secretase complex. Using kinetic labeling studies we show that in PS1(-/-)/PS2(-/-) cells nicastrin fails to reach the medial Golgi compartment, and as a consequence, is incompletely glycosylated. Stable expression of human PS1 restores these deficiencies in PS1(-/-) fibroblasts. Moreover, membrane fractionation studies show co-localization of PS1 fragments with mature nicastrin. These results indicate a novel chaperone-type role for PS1 and PS2 in facilitating nicastrin maturation and transport in the early biosynthetic compartments. Our findings are consistent with PS1 influencing gamma-secretase processing at multiple steps, including maturation and intracellular trafficking of substrates and component(s) of the gamma-secretase complex.  相似文献   

5.
Chew E  Aweiss Y  Lu CY  Banuett F 《Mycologia》2008,100(1):31-46
Abstract: Ustilago maydis is a Basidiomycete fungus that exhibits a yeast-like nonpathogenic form and a dikaryotic filamentous pathogenic form. Generation of these two forms is controlled by two mating type loci, a and b. The fungus undergoes additional morphological transitions in the plant that result in formation of a third cell type, the teliospore. The fuz1 gene is necessary for this developmental program. Here we report cloning and sequencing of fuz1 and show that it contains an open reading frame with coding capacity for a protein of 1421 amino acids. The Fuz1 protein belongs to the family of MYND Zn finger domain proteins. We generate a null mutation in strains of opposite mating type and show that fuz1 is necessary for conjugation tube formation, a morphological transition that occurs in response to pheromones. We generate fuz1- diploid strains heterozygous at a and b and show that fuz1 is also necessary for postfusion events (maintenance of filamentous growth). We also demonstrate that fuz1 is necessary for cell morphogenesis of the yeast-like cell: normal cell length, location and number of septa, cell separation and constriction of the neck region. Fuz1 is also required for cell wall integrity and to prevent secretion of a dark pigment. We propose that the MYND domain may interact with different proteins to regulate cell morphogenesis.  相似文献   

6.
Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.  相似文献   

7.
During inner ear development programmed cell death occurs in specific areas of the otic epithelium but the significance of it and the molecules involved have remained unclear. We undertook an analysis of mouse mutants in which genes encoding apoptosis-associated molecules have been inactivated. Disruption of the Apaf1 gene led to a dramatic decrease in apoptosis in the inner ear epithelium, severe morphogenetic defects and a significant size reduction of the membranous labyrinth, demonstrating that an Apaf1-dependent apoptotic pathway is necessary for normal inner ear development. This pathway most probably operates through the apoptosome complex because caspase 9 mutant mice suffered similar defects. Inactivation of the Bcl2-like (Bcl2l) gene led to an overall increase in the number of cells undergoing apoptosis but did not cause any major morphogenetic defects. In contrast, decreased apoptosis was observed in specific locations that suffered from developmental deficits, indicating that proapoptotic isoform(s) produced from Bcl2l might have roles in inner ear development. In Apaf1(-/-)/Bcl2l(-/-) double mutant embryos, no cell death could be detected in the otic epithelium, demonstrating that the cell death regulated by the anti-apoptotic Bcl2l isoform, Bcl-X(L) in the otic epithelium is Apaf1-dependent. Furthermore, the otic vesicle failed to close completely in all double mutant embryos analyzed. These results indicate important roles for both Apaf1 and Bcl2l in inner ear development.  相似文献   

8.
Eyes absent (Eya) genes regulate organogenesis in both vertebrates and invertebrates. Mutations in human EYA1 cause congenital Branchio-Oto-Renal (BOR) syndrome, while targeted inactivation of murine Eya1 impairs early developmental processes in multiple organs, including ear, kidney and skeletal system. We have now examined the role of Eya1 during the morphogenesis of organs derived from the pharyngeal region, including thymus, parathyroid and thyroid. The thymus and parathyroid are derived from 3rd pharyngeal pouches and their development is initiated via inductive interactions between neural crest-derived arch mesenchyme, pouch endoderm, and possibly the surface ectoderm of 3rd pharyngeal clefts. Eya1 is expressed in all three cell types during thymus and parathyroid development from E9.5 and the organ primordia for both of these structures failed to form in Eya1(-/-) embryos. These results indicate that Eya1 is required for the initiation of thymus and parathyroid gland formation. Eya1 is also expressed in the 4th pharyngeal region and ultimobranchial bodies. Eya1(-/-) mice show thyroid hypoplasia, with severe reduction in the number of parafollicular cells and the size of the thyroid lobes and lack of fusion between the ultimobranchial bodies and the thyroid lobe. These data indicate that Eya1 also regulates mature thyroid gland formation. Furthermore, we show that Six1 expression is markedly reduced in the arch mesenchyme, pouch endoderm and surface ectoderm in the pharyngeal region of Eya1(-/-) embryos, indicating that Six1 expression in those structures is Eya1 dependent. In addition, we show that in Eya1(-/-) embryos, the expression of Gcm2 in the 3rd pouch endoderm is undetectable at E10.5, however, the expression of Hox and Pax genes in the pouch endoderm is preserved at E9.5-10.5. Finally, we found that the surface ectoderm of the 3rd and 4th pharyngeal region show increased cell death at E10.5 in Eya1(-/-) embryos. Our results indicate that Eya1 controls critical early inductive events involved in the morphogenesis of thymus, parathyroid and thyroid.  相似文献   

9.
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis.  相似文献   

10.
11.
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.  相似文献   

12.
A problem for inositol signaling is to understand the significance of the kinases that convert inositol hexakisphosphate to diphosphoinositol polyphosphates. This kinase activity is catalyzed by Kcs1p in the yeast Saccharomyces cerevisiae. A kcs1Delta yeast strain that was transformed with a specifically "kinase-dead" kcs1p mutant did not synthesize diphosphoinositol polyphosphates, and the cells contained a fragmented vacuolar compartment. Biogenesis of the yeast vacuole also required another functional domain in Kcs1p, which contains two leucine heptad repeats. The kinase activity of Kcs1p was also found to sustain cell growth and integrity of the cell wall and to promote adaptive responses to salt stress. Thus, the synthesis of diphosphoinositol polyphosphates has wide ranging physiological significance. Furthermore, we showed that these phenotypic responses to Kcs1p deletion also arise when synthesis of precursor material for the diphosphoinositol polyphosphates is blocked in arg82Delta cells. This metabolic block was partially bypassed, and the phenotype was partially rescued, when Kcs1p was overexpressed in the arg82Delta cells. This was due, in part, to the ability of Kcs1p to phosphorylate a wider range of substrates than previously appreciated. Our results show that diphosphoinositol polyphosphate synthase activity is essential for biogenesis of the yeast vacuole and the cell's responses to certain environmental stresses.  相似文献   

13.
14.
We examined the role of BCR cell membrane redistribution in anti-IgM-induced apoptosis in three human B cell lines, RA#1, 2G6, and MC116, that differ in their relative levels of sIgM expression. The apoptotic response was found to be dependent on the nature of the anti-IgM and the cell line. In the cell lines, RA#1 and MC116, sIgM aggregated into patches that were insensitive to the disruption of cholesterol-rich membrane microdomains by nystatin or beta-MCD. The B cell line 2G6 was able to reorganize sIgM into a tight coalescent cap upon anti-IgM treatment. However, in this case, the lipid raft inhibitors nystatin and beta-MCD disrupted the patching. In 2G6 cells, BCR-mediated apoptosis was not affected by nystatin treatment, whereas it increased in beta-MCD pretreated cells. Thus, no evident correlation was found between apoptosis and BCR cell membrane redistribution or lipid raft formation in either of the three cell lines. The data indicate that the apoptotic signal transduction pathway is independent of BCR translocation into lipid rafts and/or aggregation.  相似文献   

15.
Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion.  相似文献   

16.
17.
A gene responsible for an autosomal recessive form of hereditary spastic paraplegia (SPG7) was recently identified. This gene encodes paraplegin, a mitochondrial protein highly homologous to the yeast mitochondrial AAA proteases Afg3p, Rca1p, and Yme1p, which have both proteolytic and chaperone-like activities at the inner mitochondrial membrane. By screening the expressed sequence tag database, we identified and characterized a novel human gene, YME1L1 (YME1L1-like1, HGMW-approved symbol). This gene encodes a predicted protein of 716 amino acids highly similar to all mitochondrial AAA proteases and in particular to yeast Yme1p. Expression and immunofluorescence studies revealed that YME1L1 and paraplegin share a similar expression pattern and the same subcellular localization in the mitochondrial compartment. YME1L1 may represent a candidate gene for other forms of hereditary spastic paraplegia and possibly for other neurodegenerative disorders.  相似文献   

18.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

19.
The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker’s yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.  相似文献   

20.
We have shown previously that either Grb2- or Shc-mediated signaling from the oncogenic Met receptor Tpr-Met is sufficient to trigger cell cycle progression in Xenopus oocytes. However, direct binding of these adaptors to Tpr-Met is dispensable, implying that another Met binding partner mediates these responses. In this study, we show that overexpression of Grb2-associated binder 1 (Gab1) promotes cell cycle progression when Tpr-Met is expressed at suboptimal levels. This response requires that Gab1 possess an intact Met-binding motif, the pleckstrin homology domain, and the binding sites for phosphatidylinositol 3-kinase and tyrosine phosphatase SHP-2, but not the Grb2 and CrkII/phospholipase Cγ binding sites. Importantly, we establish that Gab1-mediated signals are critical for cell cycle transition promoted by the oncogenic Met and fibroblast growth factor receptors, but not by progesterone, the natural inducer of cell cycle transition in Xenopus oocytes. Moreover, Gab1 is essential for Tpr-Met–mediated morphological transformation and proliferation of fibroblasts. This study provides the first evidence that Gab1 is a key binding partner of the Met receptor for induction of cell cycle progression, proliferation, and oncogenic morphological transformation. This study identifies Gab1 and its associated signaling partners as potential therapeutic targets to impair proliferation or transformation of cancer cells in human malignancies harboring a deregulated Met receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号