首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes.  相似文献   

2.
The lacrimal gland provides an excellent model with which to study the epithelial-mesenchymal interactions that are crucial to the process of branching morphogenesis. In the current study, we show that bone morphogenetic protein 7 (Bmp7) is expressed with a complex pattern in the developing gland and has an important role in regulating branching. In loss-of-function analyses, we find that Bmp7-null mice have distinctive reductions in lacrimal gland branch number, and that inhibition of Bmp activity in gland explant cultures has a very similar consequence. Consistent with this, exposure of whole-gland explants to recombinant Bmp7 results in increased branch number. In determining which cells of the gland respond directly to Bmp7, we have tested isolated mesenchyme and epithelium. We find that, as expected, Bmp4 can suppress bud extension in isolated epithelium stimulated by Fgf10, but interestingly, Bmp7 has no discernible effect. Bmp7 does, however, stimulate a distinct response in mesenchymal cells. This manifests as a promotion of cell division and formation of aggregates, and upregulation of cadherin adhesion molecules, the junctional protein connexin 43 and of alpha-smooth muscle actin. These data suggest that in this branching system, mesenchyme is the primary target of Bmp7 and that formation of mesenchymal condensations characteristic of signaling centers may be enhanced by Bmp7. Based on the activity of Bmp7 in promoting branching, we also propose a model suggesting that a discrete region of Bmp7-expressing head mesenchyme may be crucial in determining the location of the exorbital lobe of the gland.  相似文献   

3.
Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.  相似文献   

4.
Eps8 in the midst of GTPases   总被引:5,自引:0,他引:5  
Eps8, originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR), displays a domain organization typical of a signaling molecule that includes a putative N-terminal PTB domain, a central SH3 domain, and a C-terminal "effector region". This latter region directs Eps8 localization within the cell and is sufficient to activate the GTPase, Rac, leading to actin cytoskeletal remodeling. Eps8 binds, through its SH3 domain, to either Abi1 (also called E3b1) or RN-tre. Abi1 scaffolds together Eps8 and Sos1, a dual specificity guanine nucleotide exchange factor for Ras and Rac proteins, thus facilitating the formation of a trimeric complex, in turn required for activation of Rac. On the other hand, RN-tre, a Rab5 GTPase activating protein, by entering in a complex with Eps8, inhibits EGFR internalization. Furthermore, RN-tre competes with Abi1 for binding to Eps8, diverting the latter from its Rac-activating function. Thus, depending on its engagement in different complexes, Eps8 participates to EGFR signaling through Rac and endocytosis through Rab5.  相似文献   

5.

Background  

The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive.  相似文献   

6.
7.
Easter J  Gober JW 《Molecular cell》2002,10(2):427-434
ParA and ParB of Caulobacter crescentus belong to a conserved family of bacterial proteins implicated in chromosome segregation. ParB binds to DNA sequences adjacent to the origin of replication and localizes to opposite cell poles shortly following the initiation of DNA replication. ParA has homology to a conserved and widespread family of ATPases. Here, we show that ParB regulates the ParA ATPase activity by promoting nucleotide exchange in a fashion reminiscent of the exchange factors of eukaryotic G proteins. Furthermore, we demonstrate that ADP-bound ParA binds single-stranded DNA, whereas the ATP-bound form dissociates ParB from its DNA binding sites. Increasing the fraction of ParA-ADP in the cell inhibits cell division, suggesting that this simple nucleotide switch may regulate cytokinesis.  相似文献   

8.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

9.
Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.  相似文献   

10.
Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.  相似文献   

11.
Summary Lithium diiodosalicylate (LIS) was used to selectively solubilize proteins from purified intestinal brush border membrane vesicles. Incubation of the vesicles with increasing concentrations of LIS resulted in the progressive release of proteins with total disruption of the membranes being obtained at 200 mM. Maximum selectivity was observed at 20–30 mM LIS which preferentially released actin and other non-glycosylated proteins while all the glycoproteins remained associated with the membrane. Electron micrographs showed that, after LIS treatment, brush border vesicles are partially disrupted and have lost their inner core of microfilaments. Sucrase, trehalase, leucylnaphthylamide hydrolase, -glutamyl transpeptidase and alkaline phosphatase all retained more than 70% of their activities and remained associated with the membrane fraction after LIS solubilization (30 mM). The results indicate that lithium diiodosalicylate treatment provides an efficient method for the separation of cytoskeletal proteins from intrinsic membrane glycoproteins and should be very useful for the purification of microvilli proteins and for the study of membrane-protein interactions.Abbreviations LIS Lithium 3,5-diiodosalicylate - LNAase leucylnaphthylamide hydrolase - Tris Tris (hydroxymethyl) aminomethane  相似文献   

12.
13.
Actin filament barbed-end capping proteins are essential for cell motility, as they regulate the growth of actin filaments to generate propulsive force. One family of capping proteins, whose prototype is gelsolin, shares modular architecture, mechanism of action, and regulation through signalling-dependent mechanisms, such as Ca(2+) or phosphatidylinositol-4,5-phosphate binding. Here we show that proteins of another family, the Eps8 family, also show barbed-end capping activity, which resides in their conserved carboxy-terminal effector domain. The isolated effector domain of Eps8 caps barbed ends with an affinity in the nanomolar range. Conversely, full-length Eps8 is auto-inhibited in vitro, and interaction with the Abi1 protein relieves this inhibition. In vivo, Eps8 is recruited to actin dynamic sites, and its removal impairs actin-based propulsion. Eps8-family proteins do not show any similarity to gelsolin-like proteins. Thus, our results identify a new family of actin cappers, and unveil novel modalities of regulation of capping through protein-protein interactions. One established function of the Eps8-Abi1 complex is to participate in the activation of the small GTPase Rac, suggesting a multifaceted role for this complex in actin dynamics, possibly through the participation in alternative larger complexes.  相似文献   

14.
Spine function requires precise control of the actin cytoskeleton. Kalirin-7, a GDP/GTP exchange factor for Rac1, interacts with PDZ proteins such as PSD-95, colocalizing with PSD-95 at synapses of cultured hippocampal neurons. PSD-95 and Kalirin-7 interact in vivo and in heterologous expression systems. In primary cortical neurons, transfected Kalirin-7 is targeted to spines and increases the number and size of spine-like structures. A Kalirin-7 mutant unable to interact with PDZ proteins remains in the cell soma, inducing local formation of aberrant filopodial neurites. Kalirin-7 with an inactivated GEF domain reduces the number of spines below control levels. These results provide evidence that PDZ proteins target Kalirin-7 to the PSD, where it regulates dendritic morphogenesis through Rac1 signaling to the actin cytoskeleton.  相似文献   

15.
In mammalian central nervous system (CNS), the integrity of the blood–spinal cord barrier (BSCB), formed by tight junctions (TJs) between adjacent microvascular endothelial cells near the basement membrane of capillaries and the accessory structures, is important for relatively independent activities of the cellular constituents inside the spinal cord. The barrier function of the BSCB are tightly regulated and coordinated by a variety of physiological or pathological factors, similar with but not quite the same as its counterpart, the blood–brain barrier (BBB). Herein, angiopoietin 1 (Ang1), an identified ligand of the endothelium-specific tyrosine kinase receptor Tie-2, was verified to regulate barrier functions, including permeability, junction protein interactions and F-actin organization, in cultured spinal cord microvascular endothelial cells (SCMEC) of rat through the activity of Akt. Besides, these roles of Ang1 in the BSCB in vitro were found to be accompanied with an increasing expression of epidermal growth factor receptor pathway substrate 8 (Eps8), an F-actin bundling protein. Furthermore, the silencing of Eps8 by lentiviral shRNA resulted in an antagonistic effect vs. Ang1 on the endothelial barrier function of SCMEC. In summary, the Ang1–Akt pathway serves as a regulator in the barrier function modulation of SCMEC via the actin-binding protein Eps8.  相似文献   

16.
We previously demonstrated that the number and height of oocyte microvilli were reduced in baboon fetuses deprived of estrogen in utero and restored to normal in animals supplemented with estradiol. Phosphorylated ezrin and Na+/H+ exchange regulatory factor 1 (NHERF, now termed SLC9A3R1) link f-actin bundles to the membrane, whereas alpha-actinin cross-links f-actin to form microvilli. Therefore, we determined whether these proteins were expressed in oocytes of the fetal baboon ovary and whether expression and/or localization were altered between mid and late gestation in association with an increase in estrogen and in late gestation in animals in which estrogen was suppressed (>95%) or restored by treatment with an aromatase inhibitor with or without estradiol. Expression of alpha-actinin was low at mid gestation, increased on the surface of oocytes of primordial follicles in late gestation, and was negligible in the ovaries of estrogen-suppressed fetuses and normal in animals treated with estrogen. Ezrin (total and phosphorylated) and SLC9A3R1 expression was localized to the surface of oocytes at mid and late gestation in estrogen-replete baboons and to the cytoplasm in late gestation after estrogen suppression. These results are the first to show that the fetal baboon oocyte expressed ezrin, SLC9A3R1, and alpha-actinin, and that these proteins were localized to the oocyte surface consistent with their role in microvilli development in epithelial cells. The current study also showed that the developmental increase in oocyte expression of alpha-actinin is regulated by estrogen and correlated with the estrogen-dependent increase in oocyte microvilli demonstrated previously. Therefore, we propose that development of oocyte microvilli requires expression of alpha-actinin and that expression of alpha-actinin and localization of ezrin-phosphate and SLC9A3R1 to the oocyte membrane are regulated by estrogen.  相似文献   

17.
The Notch effector E(spl)M8 is phosphorylated at Ser159 by CK2, a highly conserved Ser/Thr protein kinase. We have used the Gal4-UAS system to assess the role of M8 phosphorylation during bristle and eye morphogenesis by employing a non-phosphorylatable variant (M8SA) or one predicted to mimic the 'constitutively' phosphorylated protein (M8SD). We find that phosphorylation of M8 does not appear to be critical during bristle morphogenesis. In contrast, only M8SD elicits a severe 'reduced eye' phenotype when it is expressed in the morphogenetic furrow of the eye disc. M8SD elicits neural hypoplasia in eye discs, elicits loss of phase-shifted Atonal-positive cells, i.e. the 'founding' R8 photoreceptors, and consequently leads to apoptosis. The ommatidial phenotype of M8SD is similar to that in Nspl/Y; E(spl)D/+ flies. E(spl)D, an allele of m8, encodes a truncated protein known as M8*, which, unlike wild type M8, displays exacerbated antagonism of Atonal via direct protein-protein interactions. In line with this, we find that the M8SD-Atonal interaction appears indistinguishable from that of M8*-Atonal, whereas interaction of M8 or M8SA appears marginal, at best. These results raise the possibility that phosphorylation of M8 (at Ser159) might be required for its ability to mediate 'lateral inhibition' within proneural clusters in the developing retina. This is the first identification of a dominant allele encoding a phosphorylation-site variant of an E(spl) protein. Our studies uncover a novel functional domain that is conserved amongst a subset of E(spl)/Hes repressors in Drosophila and mammals, and suggests a potential role for CK2 during retinal patterning.  相似文献   

18.
Alkylating DNA-damage agents such as N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG) trigger necroptosis, a newly defined form of programmed cell death (PCD) managed by receptor interacting protein kinases. This caspase-independent mode of cell death involves the sequential activation of poly(ADP-ribose) polymerase-1 (PARP-1), calpains, BAX and AIF, which redistributes from mitochondria to the nucleus to promote chromatinolysis. We have previously demonstrated that the BAX-mediated mitochondrial release of AIF is a critical step in MNNG-mediated necroptosis. However, the mechanism regulating BAX activation in this PCD is poorly understood. Employing mouse embryonic knockout cells, we reveal that BID controls BAX activation in AIF-mediated necroptosis. Indeed, BID is a link between calpains and BAX in this mode of cell death. Therefore, even if PARP-1 and calpains are activated after MNNG treatment, BID genetic ablation abolishes both BAX activation and necroptosis. These PCD defects are reversed by reintroducing the BID-wt cDNA into the BID(-/-) cells. We also demonstrate that, after MNNG treatment, BID is directly processed into tBID by calpains. In this way, calpain non-cleavable BID proteins (BID-G70A or BID-Δ68-71) are unable to promote BAX activation and necroptosis. Once processed, tBID localizes in the mitochondria of MNNG-treated cells, where it can facilitate BAX activation and PCD. Altogether, our data reveal that, as in caspase-dependent apoptosis, BH3-only proteins are key regulators of caspase-independent necroptosis.  相似文献   

19.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

20.
Ezrin, a member of the ezrin/radixin/moesin (ERM) family, localizes to microvilli of epithelia in vivo, where it bridges actin filaments and plasma membrane proteins. Here, we demonstrate two specific morphogenetic roles of ezrin in the retinal pigment epithelium (RPE), i.e., the formation of very long apical microvilli and of elaborate basal infoldings typical of these cells, and characterize the role of ezrin in these processes using antisense and transfection approaches. In the adult rat RPE, only ezrin (no moesin or radixin) was detected at high levels by immunofluorescence and immunoelectron microscopy at microvilli and basal infoldings. At the time when these morphological differentiations develop, in the first two weeks after birth, ezrin levels increased fourfold to adult levels. Addition of ezrin antisense oligonucleotides to primary cultures of rat RPE drastically decreased both apical microvilli and basal infoldings. Transfection of ezrin cDNA into the RPE-J cell line, which has only trace amounts of ezrin and moesin, sparse and stubby apical microvilli, and no basal infoldings, induced maturation of microvilli and the formation of basal infoldings without changing moesin expression levels. Taken together, the results indicate that ezrin is a major determinant in the maturation of surface differentiations of RPE independently of other ERM family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号