首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Glucose transporter asymmetries in the bovine blood-brain barrier   总被引:5,自引:0,他引:5  
The transport of glucose across the mammalian blood-brain barrier is mediated by the GLUT1 glucose transporter, which is concentrated in the endothelial cells of the cerebral microvessels. Several studies supported an asymmetric distribution of GLUT1 protein between the luminal and abluminal membranes (1:4) with a significant proportion of intracellular transporters. In this study we investigated the activity and concentration of GLUT1 in isolated luminal and abluminal membrane fractions of bovine brain endothelial cells. Glucose transport activity and glucose transporter concentration, as determined by cytochalasin B binding, were 2-fold greater in the luminal than in the abluminal membranes. In contrast, Western blot analysis using a rabbit polyclonal antibody raised against the C-terminal 20 amino acids of GLUT1 indicated a 1:5 luminal:abluminal distribution. Western blot analysis with antibodies raised against either the intracellular loop of GLUT1 or the purified erythrocyte protein exhibited luminal:abluminal ratios of 1:1. A similar ratio was observed when the luminal and abluminal fractions were exposed to the 2-N-4[(3)H](1-azi-2,2,2,-trifluoroethyl)benzoxyl-1,3-bis-(d-mannos-4-yloxyl)-2-propylamine ([(3)H]ATB-BMPA) photoaffinity label. These observations suggest that either an additional glucose transporter isoform is present in the luminal membrane of the bovine blood-brain barrier or the C-terminal epitope of GLUT1 is "masked" in the luminal membrane but not in the abluminal membranes.  相似文献   

2.
The unique COOH-terminal 30-amino acid region of the adipocyte/skeletal muscle glucose transporter (GLUT4) appears to be a major structural determinant of this protein's perinuclear localization, from where it is redistributed to the cell surface in response to insulin. To test whether an underlying mechanism of this domain's function involves glucose transporter endocytosis rates, transfected cells were generated expressing exofacial hemagglutinin epitope (HA)-tagged erythrocyte/brain glucose transporter (GLUT1) or a chimera containing the COOH-terminal 30 amino acids of GLUT4 substituted onto this GLUT1 construct. Incubation of COS-7 or CHO cells expressing the HA-tagged chimera with anti-HA antibody at 37 degrees resulted in an increased rate of antibody internalization compared to cells expressing similar levels of HA-tagged GLUT1, which displays a cell surface disposition. Colocalization of the internalized anti-HA antibody in vesicular structures with internalized transferrin and with total transporters was established by digital imaging microscopy, suggesting the total cellular pool of transporters are continuously recycling through the coated pit endocytosis pathway. Mutation of the unique double leucines 489 and 490 in the rat GLUT4 COOH-terminal domain to alanines caused the HA-tagged chimera to revert to the slow endocytosis rate and steady- state cell surface display characteristic of GLUT1. These results support the hypothesis that the double leucine motif in the GLUT4 COOH terminus operates as a rapid endocytosis and retention signal in the GLUT4 transporter, causing its localization to intracellular compartments in the absence of insulin.  相似文献   

3.
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways.  相似文献   

4.
Glucose transporter 4 (GLUT4) is the main insulin-responsive glucose transporter in skeletal muscle and adipose tissue of human and rodent, and is translocated to the plasma membrane in response to insulin. GLUT2 is well known as the main glucose transporter in pancreatic islets and could highly regulate glucose-stimulated insulin secretion by B-cells as a glucose sensor. We confirmed the presence of GLUT4 mRNA and GLUT4 protein in pancreas in the human. Indirect immunohistochemistry showed that the pancreatic islets of human and rat were conspicuously labeled by anti-GLUT4 antibody. The presence of placental leucine aminopeptidase (P-LAP), a homologue of insulin-regulated aminopeptidase (IRAP), was also shown in the human pancreatic islet. IRAP/P-LAP is thought to be involved in glucose metabolism. This study provides the first evidence that GLUT4 is present in human and rat pancreatic islets and may suggest its specific role in glucose homeostasis in conjunction with IRAP/P-LAP.  相似文献   

5.
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the insulin-sensitive L6 myoblast cell line. Analysis of immunogold-labeled cells of independent clonal lines by electron microscopy indicated that 51-53% of GLUT1 was present in the plasma membrane in the basal state. Insulin did not significantly affect this distribution. In contrast, only 4.2- 6.1% of GLUT4 was present in the plasma membrane of basal L6 cells and insulin increased this percentage by 3.7-6.1-fold. Under basal conditions and after insulin treatment, GLUT4 was detected in tubulovesicular structures, often clustered near Golgi stacks, and in endosome-like vesicles. Analysis of 25 chimeric transporters consisting of reciprocal domains of GLUT1 and GLUT4 by confocal immunofluorescence microscopy indicated that only the final 25 amino acids of the COOH- terminal cytoplasmic tail of GLUT4 were both necessary and sufficient for the targeting pattern observed for GLUT4. A dileucine motif present in the COOH-terminal tail of GLUT4 was found to be necessary, but not sufficient, for intracellular targeting. Contrary to previous studies, the NH2 terminus of GLUT4 did not affect the subcellular distribution of chimeras. Analysis of a chimera containing the COOH-terminal tail of GLUT4 by immunogold electron microscopy indicated that its subcellular distribution in basal cells was very similar to that of wild-type GLUT4 and that its content in the plasma membrane increased 6.8-10.5-fold in the presence of insulin. Furthermore, only the chimera containing the COOH terminus of GLUT4 enhanced insulin responsive 2-deoxyglucose uptake. GLUT1 and two other chimeras lacking the COOH terminus of GLUT4 were studied by immunogold electron microscopy and did not demonstrate insulin-mediated changes in subcellular distribution. The NH2-terminal cytoplasmic tail of GLUT4 did not confer intracellular sequestration and did not cause altered subcellular distribution in the presence of insulin. Intracellular targeting of one chimera to non-insulin- sensitive compartments was also observed. We conclude that the COOH terminus of GLUT4 is both necessary and sufficient to confer insulin- sensitive subcellular targeting of chimeric glucose transporters in L6 myoblasts.  相似文献   

6.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

7.
8.
The possible role of protein kinase C in the regulation of glucose transport in the rat adipose cell has been examined. Both insulin and phorbol 12-myristate 13-acetate (PMA) stimulate 3-O-methylglucose transport in the intact cell ein association with the subcellular redistribution of glucose transporters from the low density microsomes to the plasma membranes, as assessed by cytochalasin B binding. In addition, the actions of insulin and PMA on glucose transport activity and glucose transporter redistribution are additive. Furthermore, PMA accelerates insulin's stimulation of glucose transport activity, reducing the t1/2 from 3.2 +/- 0.4 to 2.1 +/- 0.2 min (mean +/- S.E.). However, the effect of PMA on glucose transport activity is approximately 10% of that for insulin whereas its effect on glucose transporter redistribution is approximately 50% of the insulin response. Immunoblots of the GLUT1 and GLUT4 glucose transporter isoforms in subcellular membrane fractions also demonstrate that the translocations of GLUT1 in response to PMA and insulin are of similar magnitude whereas the translocation of GLUT4 in response to insulin is markedly greater than that in response to PMA. Thus, glucose transport activity in the intact cell with PMA and insulin correlates more closely with the appearance of GLUT4 in the plasma membrane than cytochalasin B-assayable glucose transporters. Although these data do not clarify the potential role of protein kinase C in the mechanism of insulin action, they do suggest that the mechanisms through which insulin and PMA stimulate glucose transport are distinct but interactive.  相似文献   

9.
Glucose transporter isoform expression was studied in the skeletal muscle-like cell line, C2C12. Northern and Western blot analysis showed that the insulin-responsive muscle/fat glucose transporter isoform, GLUT 4, was expressed in these cells at very low levels, whereas the erythrocyte isoform, GLUT 1, was expressed at readily detectable levels. Insulin did not stimulate glucose transport in this cultured muscle cell line. The C2C12 cells were then transfected separately with either GLUT 1 or GLUT 4, and stable cell lines expressing high levels of mRNA and protein were isolated. GLUT 1-transfected cells exhibited a 3-fold increase in the amount of the GLUT 1 transporter protein which was accompanied by a 2- to 3-fold increase in the glucose uptake rate. However, despite at least a 10-fold increase in GLUT 4 mRNA and protein detected after GLUT 4 cDNA transfection, the glucose uptake of these cells was unchanged and remained insulin-insensitive. By laser confocal immunofluorescence imaging, it was established that the transfected GLUT 4 protein was localized almost entirely in cytoplasmic compartments. In contrast, the GLUT 1 isoform was detected both at the plasma membrane as well as in intracellular compartments. These results suggest that acute insulin stimulation of glucose transport is not solely dependent on the presence of the insulin receptor and the GLUT 4 protein, and that the presence of some additional protein(s) must be required.  相似文献   

10.
The insulin-regulated adipocyte/skeletal muscle glucose transporter (GLUT4) displays a characteristic steady-state intracellular localization under basal conditions, whereas the erythrocyte/brain transporter isoform (GLUT1) distributes mostly to the cell surface. To identify possible structural elements in these transporter proteins that determine their cellular localization, GLUT1/GLUT4 chimera cDNA constructs that contain the hemagglutinin epitope YPYDVPDYA (HA) in their major exofacial loops were engineered. Binding of monoclonal anti- HA antibody to non-permeabilized COS-7 cells expressing HA-tagged transporter chimeras revealed that expression of transporters on the cell surface was strongly influenced by their cytoplasmic COOH-terminal domain. This method also revealed a less marked, but significant effect on cellular localization of amino acid residues between transporter exofacial and middle loops. The subcellular distribution of expressed chimeras was confirmed by immunofluorescence microscopy of permeabilized COS-7 cells. Thus, HA-tagged native GLUT4 was concentrated in the perinuclear region, whereas a chimera containing the COOH-terminal 29 residues of GLUT1 substituted onto GLUT4 distributed to the plasma membrane, as did native GLUT1. Furthermore, a chimera composed of GLUT1 with a GLUT4 COOH-terminal 30-residue substitution exhibited a predominantly intracellular localization. Similar data was obtained in CHO cells stably expressing these chimeras. Taken together, these results define the unique COOH-terminal cytoplasmic sequences of the GLUT1 and GLUT4 glucose transporters as important determinants of cellular localization in COS-7 and CHO cells.  相似文献   

11.
Abstract : The transport of glucose across the blood-brain barrier (BBB) is mediated by the high molecular mass (55-kDa) isoform of the GLUT1 glucose transporter protein. In this study we have utilized the tritiated, impermeant photolabel 2-N-[4-(1-azi-2,2,2-trifluoroethyl)[2-3H]propyl]-1,3-bis(d -mannose-4-yloxy)-2-propylamine to develop a technique to specifically measure the concentration of GLUT1 glucose transporters on the luminal surface of the endothelial cells of the BBB. We have combined this methodology with measurements of BBB glucose transport and immunoblot analysis of isolated brain microvessels for labeled luminal GLUT1 and total GLUT1 to reevaluate the effects of chronic hypoglycemia and diabetic hyperglycemia on transendothelial glucose transport in the rat. Hypoglycemia was induced with continuous-release insulin pellets (6 U/day) for a 12- to 14-day duration ; diabetes was induced by streptozotocin (65 mg/kg i.p.) for a 14- to 21-day duration. Hypoglycemia resulted in 25-45% increases in regional BBB permeability-surface area (PA) values for d -[14C]glucose uptake, when measured at identical glucose concentration using the in situ brain perfusion technique. Similarily, there was a 23 ± 4% increase in total GLUT1/mg of microvessel protein and a 52 ± 13% increase in luminal GLUT1 in hypoglycemic animals, suggesting that both increased GLUT1 synthesis and a redistribution to favor luminal transporters account for the enhanced uptake. A corresponding (twofold) increase in cortical GLUT1 mRNA was observed by in situ hybridization. In contrast, no significant changes were observed in regional brain glucose uptake PA, total microvessel 55-kDa GLUT1, or luminal GLUT1 concentrations in hyperglycemic rats. There was, however, a 30-40% increase in total cortical GLUT1 mRNA expression, with a 96% increase in the microvessels. Neither condition altered the levels of GLUT3 mRNA or protein expression. These results show that hypoglycemia, but not hyperglycemia, alters glucose transport activity at the BBB and that these changes in transport activity result from both an overall increase in total BBB GLUT1 and an increased transporter concentration at the luminal surface.  相似文献   

12.
Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.  相似文献   

13.
P J Bilan  Y Mitsumoto  T Ramlal  A Klip 《FEBS letters》1992,298(2-3):285-290
Insulin-like growth factor I (IGF-I) rapidly (less than 10 min) stimulated glucose uptake into myotubes of the L6 muscle cell line, at concentrations that act specifically on IGF-I receptors. Uptake remained stimulated at a steady level for 1-2 h, after which a second stimulation occurred. The first phase was insensitive to inhibition of protein synthesis. Subcellular fractionation demonstrated that it was accompanied by translocation of glucose transporters (both GLUT1 and GLUT4) to the plasma membrane from intracellular membranes. Translocation sufficed to explain the first phase increase in glucose transport, and there was no change in the total cellular content of GLUT1 or GLUT4 glucose transporters. The second phase of stimulation was inhibitable by cycloheximide, and involved a net increase in either GLUT1 or GLUT4 transporter content, which was reflected in an increase in transporter number in plasma membranes. These results define a cellular mechanism of metabolic action of IGF-I in muscle cells; furthermore, they suggest that IGF-I has acute metabolic effects that mimic those of insulin, bypassing action on the insulin receptor.  相似文献   

14.
The facilitative glucose transporter GLUT4 plays a key role in regulating whole body glucose homeostasis. GLUT4 dramatically changes its distribution upon insulin stimulation, and insulin-resistant diabetes is often linked with compromised translocation of GLUT4 under insulin stimulation. To elucidate the functional significance of the sole N-glycan chain on GLUT4, wild-type GLUT4 and a GLUT4 glycosylation mutant conjugated with enhanced GFP were stably expressed in HeLa cells. The N-glycan contributed to the overall stability of newly synthesized GLUT4. Moreover, cell surface expression of wild-type GLUT4 in HeLa cells was elevated upon insulin treatment, whereas the glycosylation mutant lost the ability to respond to insulin. Subcellular distribution of the mutant was distinct from that of wild-type GLUT4, implying that the subcellular localization required for insulin-mediated translocation was impaired in the mutant protein. Interestingly, kifunensine-treated cells also lost sensitivity to insulin, suggesting the functional importance of the N-glycan structure for GLUT4 trafficking. The K(m) or turnover rates of wild-type and mutant GLUT4, however, were similar, suggesting that the N-glycan had little effect on transporter activity. These findings underscore the critical roles of the N-glycan chain in quality control as well as intracellular trafficking of GLUT4.  相似文献   

15.
Facilitative glucose transporter isoforms, GLUT1 and GLUT4, have different intracellular distributions despite their very similar structure. In insulin-responsive tissues such as adipose tissues and muscle, GLUT4 protein resides mainly in the intracellular region in a basal condition and is translocated to the plasma membrane upon stimulation of insulin. In contrast, GLUT1 protein was distributed about equally between plasma membranes and low density microsomal membranes in 3T3-L1 adipocytes. Furthermore, GLUT1 and GLUT4 were reported to be differentially targeted to the plasma membrane and intracellular region, respectively, when expressed in Chinese hamster ovary cells and HepG2 cells. To elucidate the differential intracellular targeting mechanisms, several chimeric glucose transporters in which portions of GLUT4 are replaced with corresponding portions of GLUT1 have been stably expressed in Chinese hamster ovary cells. Immunofluorescence and immunoelectron microscopy as well as measurement of glucose transport activity revealed that two domains of GLUT4, which are not the NH2- or COOH-terminal domain, determine its targeting to the intracellular vesicles. The first domain contains the consensus sequence of the leucine zipper structure, suggesting that a dimer-forming structure of the glucose transporter might be required for its proper targeting. The other domain contains 28 amino acids, nine of which are different between GLUT1 and GLUT4. Immunoelectron microscopy revealed that the chimeric transporters containing both of these two domains of GLUT1, only the first domain of GLUT1, and none of the domains, exhibited a different cellular distribution with approximately 65, 30, and 15% of the transporters apparently on the plasma membrane, respectively. The addition of insulin did not alter the apparent cellular distributions of these chimeric transporters. These domains would be specifically recognized by intracellular targeting mechanisms in Chinese hamster ovary cells.  相似文献   

16.
17.
18.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

19.
20.
Patterns of glucose transporter expression have been well-characterized in mammals. However, data for birds is currently restricted to isolated cells, domestic chickens and chicks, and ducklings. Therefore, in the present study, protein and gene expression of various glucose transporters (GLUTs) in English sparrow extensor digitorum communis, gastrocnemius and pectoralis muscles as well as heart, kidney, and brain tissues were examined. The hypothesis is that the expression pattern of avian GLUTs differs from mammals to maintain the high plasma glucose levels of birds and insulin insensitivity. Our studies failed to identify a GLUT4-like insulin responsive transporter in sparrows. GLUT1 gene expression was identified in all tissues examined and shares 88% homology with chicken and 84% homology with human GLUT1. Compared to the rat control, GLUT1 immunostaining of sparrow extensor digitorum communis muscle was weak and appeared to be localized to blood vessels whereas immunostaining of gastrocnemius muscles was comparable to rat muscle controls. Gene expression of GLUT3 was identified in all tissues examined and shares 90% gene sequence homology with chicken embryonic fibroblast and 75% homology with human GLUT3. Protein expression of GLUT3 was not determined as an avian antibody is not available. Moreover, the C-terminus of the mammalian GLUT3 transporter, against which antibodies are typically designed, differs significantly among species. The predominant difference of chicken and sparrow GLUT expression patterns from that of mammals is the lack of an avian GLUT4. The absence of this insulin responsive GLUT in birds may be a contributing factor to the observed high blood glucose levels and insulin insensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号