首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling.  相似文献   

2.
Cross-communication between the Met receptor tyrosine kinase and the epidermal growth factor receptor (EGFR) has been proposed to involve direct association of both receptors and EGFR kinase-dependent phosphorylation. Here, we demonstrate that in human hepatocellular and pancreatic carcinoma cells the Met receptor becomes tyrosine phosphorylated not only upon EGF stimulation but also in response to G protein-coupled receptor (GPCR) agonists. Whereas specific inhibition of the EGFR kinase activity blocked EGF- but not GPCR agonist-induced Met receptor transactivation, it was abrogated in the presence of a reducing agent or treatment of cells with a NADPH oxidase inhibitor. Both GPCR ligands and EGF are further shown to increase the level of reactive oxygen species within the cell. Interestingly, stimulation of the Met receptor by either GPCR agonists, EGF or its cognate ligand HGF, resulted in release of Met-associated beta-catenin and in its Met-dependent translocation into the nucleus, as analyzed by small interfering RNA-mediated knockdown of the Met receptor. Our results provide a new molecular explanation for cell surface receptor cross-talk involving the Met receptor and thereby link the wide diversity of GPCRs and the EGFR to the oncogenic potential of Met signaling in human carcinoma cells.  相似文献   

3.
N Rao  A K Ghosh  S Ota  P Zhou  A L Reddi  K Hakezi  B K Druker  J Wu  H Band 《The EMBO journal》2001,20(24):7085-7095
The negative regulator Cbl functions as a ubiquitin ligase towards activated receptor tyrosine kinases and facilitates their transport to lysosomes. Whether Cbl ubiquitin ligase activity mediates its negative regulatory effects on cytoplasmic tyrosine kinases of the Syk/ZAP-70 family has not been addressed, nor is it known whether these kinases are regulated via ubiquitylation during lymphocyte B-cell receptor engagement. Here we show that B-cell receptor stimulation in Ramos cells induces the ubiquitylation of Syk tyrosine kinase which is inhibited by a dominant-negative mutant of Cbl. Intact tyrosine kinase-binding and RING finger domains of Cbl were found to be essential for Syk ubiquitylation in 293T cells and for in vitro Syk ubiquitylation. These same domains were also essential for Cbl-mediated negative regulation of Syk as measured using an NFAT-luciferase reporter in a lymphoid cell. Association with Cbl did not alter the kinase activity of Syk. Altogether, our results support an essential role for Cbl ubiquitin ligase activity in the negative regulation of Syk, and establish that ubiquitylation provides a mechanism of Cbl-mediated negative regulation of cytoplasmic targets.  相似文献   

4.
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.  相似文献   

5.
Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs.  相似文献   

6.
EGF-mediated stimulation of the EGF receptor activates a plethora of signaling cascades followed by receptor down regulation. Preventing down regulation leads to increased mitogenic signaling and potentially, cancer. Cbl and Endophilin are two key proteins required for EGF receptor down regulation and both become ubiquitylated and subject to proteasome-mediated degradation following EGF activation, providing a negative feedback loop for EGF receptor down regulation. The mechanism of this pathway is unknown. Here, we demonstrate that treatment of cells with EGF leads to JNK-dependent phosphorylation of the ubiquitin ligase Itch, stimulating Itch ligase activity. EGF-stimulated JNK activation causes an increased interaction between Itch and the de-ubiquitylating enzyme FAM, limiting the influence of Itch auto-ubiquitylation on its own degradation. Finally, JNK activation stimulates the association of Itch with its substrates. These effects combine to cause increased ubiquitylation of Itch substrates including Endophilin and Cbl, resulting in the proteasome-dependent down regulation of these key trafficking proteins. Thus, Itch is a key regulatory locus for EGF receptor degradation.  相似文献   

7.
CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion.  相似文献   

8.
Hepatocyte growth factor/scatter factor (HGF/SF) acts through the membrane-anchored Met receptor tyrosine kinase to induce invasive growth. Deregulation of this signaling is associated with tumorigenesis and involves, in most cases, overexpression of the receptor. We demonstrate that Met is processed in epithelial cells by presenilin-dependent regulated intramembrane proteolysis (PS-RIP) independently of ligand stimulation. The proteolytic process involves sequential cleavage by metalloproteases and the γ-secretase complex, leading to generation of labile fragments. In normal epithelial cells, although expression of cleavable Met by PS-RIP is down-regulated, uncleavable Met displayed membrane accumulation and induced ligand-independent motility and morphogenesis. Inversely, in transformed cells, the Met inhibitory antibody DN30 is able to promote Met PS-RIP, resulting in down-regulation of the receptor and inhibition of the Met-dependent invasive growth. This demonstrates the original involvement of a proteolytic process in degradation of the Met receptor implicated in negative regulation of invasive growth.  相似文献   

9.
Cbl proteins have RING finger-dependent ubiquitin ligase (E3) activity that is essential for down-regulation of tyrosine kinases. Here we establish that two WW domain HECT E3s, Nedd4 and Itch, bind Cbl proteins and target them for proteasomal degradation. This is dependent on the E3 activity of the HECT E3s but not on that of Cbl. Consistent with these observations, in cells expressing the epidermal growth factor receptor, Nedd4 reverses Cbl-b effects on receptor down-regulation, ubiquitylation, and proximal events in signaling. Cbl-b also targets active Src for degradation in cells, and Nedd4 similarly reverses Cbl-mediated Src degradation. These findings establish that RING finger E3s can be substrates, not only for autoubiquitylation but also for ubiquitylation by HECT E3s and suggest an additional level of regulation for Cbl substrates including protein-tyrosine kinases.  相似文献   

10.
The E3 ubiquitin ligase Cbl has been implicated in intracellular signaling pathways induced by the engagement of the B cell antigen receptor (BCR) as a negative regulator. Here we showed that Cbl deficiency results in a reduction of B cell proliferation. Cbl-/- B cells show impaired tyrosine phosphorylation, reduced Erk activation, and attenuated calcium mobilization in response to BCR engagement. The phosphorylation of Syk and Btk is also down-modulated. Interestingly, Cbl-/- B cells display enhanced BCR-induced phosphorylation of CD19 and its association with phosphatidylinositol 3-kinase. Importantly, Lyn kinase activity is up-regulated in Cbl-/- B cells, which correlates inversely with the Cbl-mediated ubiquitination of Lyn. Because Lyn has both negative and positive roles in B cells, our results suggested that Cbl differentially modulates the BCR-mediated signaling pathways through targeting Lyn ubiquitination, which affects B cell development and activation.  相似文献   

11.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

12.
Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase   总被引:1,自引:0,他引:1  
Ligand-induced down-regulation by the ubiquitin-protein ligases, c-Cbl and Cbl-b, controls signaling downstream from many receptor-tyrosine kinases (RTK). Cbl proteins bind to phosphotyrosine residues on activated RTKs to affect ligand-dependent ubiquitylation of these receptors targeting them for degradation in the lysosome. Both c-Cbl and Cbl-b contain a ubiquitin-associated (UBA) domain, which is important for Cbl dimerization and tyrosine phosphorylation; however, the mechanism of UBA-mediated dimerization and its requirement for Cbl biological activity is unclear. Here, we report the crystal structure of the UBA domain of c-Cbl refined to 2.1-A resolution. The structure reveals the protein is a symmetric dimer tightly packed along a large hydrophobic surface formed by helices 2 and 3. NMR chemical shift mapping reveals heterodimerization can occur with the related Cbl-b UBA domain via the same surface employed for homodimerization. Disruption of c-Cbl dimerization by site-directed mutagenesis impairs c-Cbl phosphorylation following activation of the Met/hepatocyte growth factor RTK and c-Cbl-dependent ubiquitination of Met. This provides direct evidence for a role of Cbl dimerization in terminating signaling following activation of RTKs.  相似文献   

13.
Proteins of the Cbl family are adaptor molecules and ubiquitin ligases with major functions in the regulation, intracellular transport and degradation of receptor tyrosine kinases (RTKs). Due to this central role, mutations that cause malfunctions of Cbl or their associated proteins - termed the Cbl interactome - easily lead to the transformation of affected cells and eventually the development of cancer. This review intends to give an overview on the mechanisms of Cbl-mediated cell transformation in light of the dysregulated intracellular trafficking of RTKs.  相似文献   

14.
肝细胞生长因子(HGF)是一种具有多重功能的细胞调控因子。HGF与其受体Met酪氨酸激酶(c-Met)的结合可激发多种生物学反应,从而调节细胞的增殖、分化、形态发生和侵袭运动等。有多种因素参与了HGF/c-Met信号传导的调控,从而防止信号的过度放大,其中Cbl1、Rab、泛素化激酶和HGF/c-Met的内吞等发挥了重要的作用。因此,对HGF/c-Met内吞过程的研究,了解内吞对于HGF/c-Met的信号传导及其调控的影响,探讨HGF/c-Met信号传导通路的调控机理和相互作用模式,可进一步阐明HGF/c-Met信号传导的调控机制,从而验证肝细胞中内吞作用直接调节HGF/c-Met信号通路的作用机制。  相似文献   

15.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   

16.
The casitas B-lineage lymphoma (Cbl) proteins play an important role in regulating signal transduction pathways by functioning as E3 ubiquitin ligases. The Cbl proteins contain a conserved tyrosine kinase binding (TKB) domain that binds more than a dozen proteins, including protein tyrosine kinases (PTKs), in a phosphorylation-dependent manner. The cell surface expression levels of the PTKs are regulated by Cbl-mediated ubiquitination, internalization, and degradation. Dysfunction in this signaling cascade has resulted in prolonged activation of the PTKs and, therefore, has been implicated in inflammatory diseases and various cancers. Due to this negative regulatory function, Cbl has been largely ignored as a therapeutic target. However, recent studies, such as the identification of (i) gain of function c-Cbl mutations in subsets of myeloid cancer and (ii) c-Cbl as a prostate basal cell marker that correlates with poor clinical outcome, suggest otherwise. Here we report the development of a competitive high-throughput fluorescence polarization assay in a 384-well format to identify inhibitors of Cbl(TKB). The high-throughput screen readiness of the assay was demonstrated by screening the Prestwick Chemical Library.  相似文献   

17.
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.  相似文献   

18.
Regulatory interactions among individual receptor-coupled signal transduction systems are critically important for establishing cellular responses in the face of multiple stimuli. In this study, potential regulatory interactions between signal transduction systems activated by growth factor receptors and by G-protein-coupled receptors were examined using human neuroblastoma SH-SY5Y cells which express endogenous epidermal growth factor (EGF) and muscarinic M3 receptors. Activation of muscarinic receptors with carbachol was found to inhibit EGF-induced signaling, including tyrosine phosphorylation of the adaptor protein Cbl and of the EGF receptor, and complex formation between Shc proteins and the EGF receptor and Grb2. Protein kinase C, which is activated by muscarinic M3 receptors, mediated this inhibitory cross-talk. Activation of EGF receptors was found to inhibit muscarinic receptor-induced tyrosine phosphorylation of focal adhesion kinase and paxillin. Reactive oxygen species, which are formed as components of the EGF signaling cascade, mediated this inhibitory cross-talk. These mutual inhibitory interactions demonstrate novel mechanisms for neuronal integration of multiple signals generated by activation of receptors by neurotransmitters and growth factors.  相似文献   

19.
Chemotherapeutic drugs that damage DNA kill tumor cells, in part, by inducing the expression of a death receptor such as Fas or its ligand, FasL. Here, we demonstrate that epidermal growth factor (EGF) stimulation of T47D breast adenocarcinoma and embryonic kidney epithelial (HEK293) cells protects these cells from Fas-induced apoptosis. EGF stimulation of epithelial cells also inhibited Fas-induced caspase activation and the proteolysis of signaling proteins downstream of the EGF receptor, Cbl and Akt/protein kinase B (Akt). EGF stimulation of Akt kinase activity blocked Fas-induced apoptosis. Expression of activated Akt in MCF-7 breast adenocarcinoma cells was sufficient to block Fas-mediated apoptosis. Inhibition of EGF-stimulated extracellular signal-regulated kinase (ERK) activity did not affect EGF protection from Fas-mediated apoptosis. The findings indicate that EGF receptor stimulation of epithelial cells has a significant survival function against death receptor-induced apoptosis mediated by Akt.  相似文献   

20.
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号