首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.

Principal Findings

Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.

Conclusions/Significance

Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.  相似文献   

3.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

4.
5.
Toll-like receptors (TLR) initiate rapid innate immune responses by recognizing microbial products. These events in turn lead to the development of an efficient adaptive immune response through the up-regulation of a number of costimulatory molecules, including members of the TNF/TNFR superfamily, on the surface of an APC. TNFR-associated factor 6 (TRAF6) is a common signaling adapter used by members of both the TNFR and the TLR/IL-1R superfamilies, and as such plays a critical role in the development of immune responses. As TRAF6-deficient mice die prematurely, we generated chimeras reconstituted with TRAF6-deficient fetal liver cells to analyze functions of TRAF6 in vivo in the hemopoietic compartment. We found that TRAF6-deficient chimeras develop a progressive lethal inflammatory disease associated with massive organ infiltration and activation of CD4(+) T cells in a Th2-polarized phenotype, and a defect in IL-18 responsiveness. When recombination-activating gene 2(-/-) blastocysts were complemented with TRAF6-deficient embryonic stem cells, a marked elevation of activated CD4(+) T cells and progressive inflammatory disease were also observed. Moreover, T cell activation and lethal inflammation were not reversed in mixed chimeric mice generated from normal and TRAF6-deficient fetal liver cells. These results suggest that deletion of TRAF6 induces a dominant Th2-type polarized autoimmune response. Therefore, in addition to playing a critical role in innate and adaptive immunity, TRAF6 is likely to play a previously unrecognized role in the maintenance of self-tolerance.  相似文献   

6.
Toll-like receptor (TLR) and interferon-gamma (IFN-gamma) signaling pathways are important for both innate and adaptive immune responses. However, the cross-talk between these two signaling pathways is incompletely understood. Here we show that IFN-gamma and LPS synergistically induce the expression of proinflammatory factors, including interleukin-1 (IL-1), IL-6, IL-12, NO, and tumor necrosis factor-alpha (TNF-alpha). Comparable synergism was observed between IFN-gamma and peptidoglycan (PGN; a TLR2 ligand) and poly(I:C) (a TLR3 ligand) in the induction of IL-12 promoter activity. IFN-gamma enhanced lipopolysaccharide (LPS)-induced ERK and JNK phosphorylation but had no effect on LPS-induced NF-kappaB activation. Interestingly, we found that IRF-8-/- macrophages were impaired in the activation of LPS-induced ERK and JNK and the production of proinflammatory cytokines induced by LPS or IFN-gamma plus LPS. Retroviral transduction of IRF-8 into IRF-8-/- macrophages rescued ERK and JNK activation. Furthermore, co-immunoprecipitation experiments show that IRF-8 physically interacts with TRAF6 at a binding site between amino acid residues 356 and 305 of IRF-8. Transfection of IRF-8 enhanced TRAF6 ubiquitination, which is consistent with a physical interaction of IRF-8 with TRAF6. Taken together, the results suggest that the interaction of IRF-8 with TRAF6 modulates TLR signaling and may contribute to the cross-talk between IFN-gamma and TLR signal pathways.  相似文献   

7.
IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascades and is essential for the innate immune response. Because TLR/IL-1R/plant R-containing receptors mediate signal transduction in a similar fashion, we investigated the role of IRAK-4 in IL-18R signaling. In this study, we show that IL-18-induced responses such as NK cell activity, Th1 IFN-gamma production, and Th1 cell proliferation are severely impaired in IRAK-4-deficient mice. IRAK-4(-/-) Th1 cells also do not exhibit NF-kappaB activation or IkappaB degradation in response to IL-18. Moreover, AP-1 activation which is triggered by c-Jun N-terminal kinase activation is also completely inhibited in IRAK-4(-/-) Th1 cells. These results suggest that IRAK-4 is an essential component of the IL-18 signaling cascade.  相似文献   

8.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

9.
10.
Glutaredoxin-1 (GRX-1) is a cytoplasmic enzyme that highly contributes to the antioxidant defense system. It catalyzes the reversible reduction of glutathione-protein mixed disulfides, a process called deglutathionylation. Here, we investigated the role of GRX-1 in the pathway triggered by interleukin-1/Toll-like receptor 4 (IL-1R/TLR4) by using RNA interference (RNAi) in HEK293 and HeLa cells. TNF receptor-associated factor 6 (TRAF6) is an intermediate signalling molecule involved in the signal transduction by members of the interleukin-1/Toll-like receptor (IL-1R/TLR) family. TRAF6 has an E3 ubiquitin ligase activity which depends on the integrity of an amino-terminal really interesting new gene (RING) finger motif. Upon receptor activation, TRAF6 undergoes K63-linked auto-polyubiquitination which mediates protein-protein interactions and signal propagation. Our data showed that IL-1R and TLR4-mediated NF-κB induction was severely reduced in GRX-1 knockdown cells. We found that the RING-finger motif of TRAF6 is S-glutathionylated under normal conditions. Moreover, upon IL-1 stimulation TRAF6 undergoes deglutathionylation catalyzed by GRX-1. The deglutathionylation of TRAF6 is essential for its auto-polyubiquitination and subsequent activation. Taken together, our findings reveal another signalling molecule affected by S-glutathionylation and uncover a crucial role for GRX-1 in the TRAF6-dependent activation of NF-κB by IL-1R/TLRs.  相似文献   

11.
DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination.  相似文献   

12.
Tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) is a crucial signaling molecule regulating a diverse array of physiological processes, including adaptive immunity, innate immunity, bone metabolism and the development of several tissues including lymph nodes, mammary glands, skin and the central nervous system. It is a member of a group of six closely related TRAF proteins, which serve as adapter molecules, coupling the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family signaling, it is also essential for signaling downstream of an unrelated family of receptors, the interleukin-1 (IL-1) receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene targeting experiments have identified several indispensable physiological functions of TRAF6, and structural and biochemical studies have revealed the potential mechanisms of its action. By virtue of its many signaling roles, TRAF6 represents an important target in the regulation of many disease processes, including immunity, inflammation and osteoporosis.  相似文献   

13.
Syntenin negatively regulates TRAF6-mediated IL-1R/TLR4 signaling   总被引:1,自引:0,他引:1  
Chen F  Du Y  Zhang Z  Chen G  Zhang M  Shu HB  Zhai Z  Chen D 《Cellular signalling》2008,20(4):666-674
Toll-like receptors are involved in host defense against invading pathogens. The two members of this superfamily, IL-1R and TLR4, activate overlapping NF-kappaB activate signaling pathway mediated by TRAF6. In this study, we identified syntenin as a negative regulator of IL-1R and TLR4 mediated NF-kappaB activation. Overexpressed syntenin inhibited IL-1- or LPS-, but not TNF- induced NF-kappaB activation and IL-8 mRNA expression in a dose dependent manner. Syntenin specifically interacted with TRAF6 in human 293 cells, and inhibited TRAF6 induced NF-kappaB and AP-1 activation. Syntenin also associated with TRAF6 under physiological condition, and dissociated from TRAF6 upon IL-1 stimulation. This might be due to a competition between syntenin and IRAK1, as overexpression of IRAK1 disrupted the interaction of syntenin with TRAF6, and rescued syntenin induced reduction of TRAF6 ubiquitination. Moreover, knockdown of syntenin potentiated IL-1- or LPS- triggered NF-kappaB activation and IL-8 mRNA expression. These findings suggest that syntenin is a physiological suppressor of TRAF6 and plays an inhibitory role in IL-1R- and TLR4- mediated NF-kappaB activation pathways.  相似文献   

14.
肿瘤坏死因子受体相关因子6(TRAF6)是一种重要的接头蛋白,在Toll样受体/白细胞介素-1受体(TLR/IL-1R)超家族所触发的信号通路中起重要作用,与先天性免疫密切相关.文章研究了尼罗罗非鱼(Oreo-chromis niloticus)traf6的表达模式和初步的功能.在健康鱼中,traf6转录本广泛表达于所...  相似文献   

15.
Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling   总被引:5,自引:0,他引:5  
IL-25 (IL-17E) induces IL-4, IL-5, and IL-13 production from an unidentified non-T/non-B cell population and subsequently induces Th2-type immune responses such as IgE production and eosinophilic airway inflammation. IL-25R is a single transmembrane protein with homology to IL-17R, but the IL-25R signaling pathways have not been fully understood. In this study, we investigated the signaling pathway under IL-25R, especially the possible involvement of TNFR-associated factor (TRAF)6 in this pathway. We found that IL-25R cross-linking induced NF-kappaB activation as well as ERK, JNK, and p38 activation. We also found that IL-25R-mediated NF-kappaB activation was inhibited by the expression of dominant negative TRAF6 but not of dominant negative TRAF2. Furthermore, IL-25R-mediated NF-kappaB activation, but not MAPK activation, was diminished in TRAF6-deficient murine embryonic fibroblast. In addition, coimmunoprecipitation assay revealed that TRAF6, but not TRAF2, associated with IL-25R even in the absence of ligand binding. Finally, we found that IL-25R-mediated gene expression of IL-6, TGF-beta, G-CSF, and thymus and activation-regulated chemokine was diminished in TRAF6-deficient murine embryonic fibroblast. Taken together, these results indicate that TRAF6 plays a critical role in IL-25R-mediated NF-kappaB activation and gene expression.  相似文献   

16.
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.  相似文献   

17.
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. However, the precise role of TRAF6 in signaling from individual TLRs has not been appropriately addressed. We analyzed macrophages from TRAF6-deficient mice and made the following observations. In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.  相似文献   

18.
Toll-like receptor (TLR) pathways signal through microbial components stimulation to induce innate immune responses. Herein, we demonstrate that BCL10, a critical molecule that signals between the T cell receptor and IkappaB kinase complexes, is involved in the innate immune system and is required for appropriate TLR4 pathway and nuclear factor-kappaB (NF-kappaB) activation. In response to lipopolysaccharide (LPS) stimulation, BCL10 was recruited to TLR4 signaling complexes and associated with Pellino2, an essential component down-stream of BCL10 in the TLR4 pathway. In a BCL10-deficient macrophage cell line, LPS-induced NF-kappaB activation was consistently defective, whereas activator protein-1 and Elk-1 signaling was intact. In addition, we found that BCL10 was targeted by SOCS3 for negative regulation in LPS signaling. The recruitment of BCL10 to TLR4 signaling complexes was attenuated by induced expression of SOCS3 in a feedback loop. Furthermore, ectopic SOCS3 expression blocked the interaction between BCL10 and Pellino2 together with BCL10-generated NF-kappaB activation and inducible nitric-oxide synthase expression. Together, these data define an important role of BCL10 in the innate immune system.  相似文献   

19.
The paracaspase MALT1 is essential for the activation of NF-κB in response to T cell receptor (TCR) stimulation. It recruits downstream TRAF6 and activates the E3 ligase activity of TRAF6 to polyubiquitinate several targets, which ultimately leads to NF-κB activation. Here we identified ubiquitin-specific protease 2a (USP2a) as a MALT1-associated protein by biochemical affinity purification. Endogenous USP2a constitutively interacted with TRAF6, but dynamically interacted with MALT1 and CARMA1 in a stimulation-dependent manner. RNA interference (RNAi)-mediated silencing of USP2a attenuated TCR-induced NF-κB activation and production of interleukin-2 (IL-2). In addition, the ubiquitination of MALT1 and TRAF6 were both suppressed by USP2a knockdown. By knockdown and reconstitution assays, we found that USP2a mediated the interaction between MALT1 and TRAF6 in a catalytic activity- dependent manner. Furthermore, USP2a deSUMOylated TRAF6. Our findings implicate that USP2a plays an important role in TCR signaling by deSUMOylating TRAF6 and mediating TRAF6-MALT1 interaction.  相似文献   

20.
Toll-like receptor 2 (TLR2) and TLR4 play important roles in innate immune responses to various microbial agents. We have previously shown that human dermal endothelial cells (HMEC) express TLR4, but very little TLR2, and respond to LPS, but not to Mycobacterium tuberculosis 19-kDa lipoprotein, unless transfected with TLR2. Here we report that HMEC are unresponsive to several additional biologically relevant TLR2 ligands, including, phenol-soluble modulin (PSM), a complex of three small secreted polypeptides from the skin commensal Staphylococcus epidermidis, soluble tuberculosis factor (STF), and Borrelia burgdorferi outer surface protein A lipoprotein (OspA-L). Expression of TLR2 renders HMEC responsive to all these ligands. We further characterized the signaling pathway in response to STF, OspA-L, and PSM in TLR2-transfected HMEC. The TLR2 signaling pathway for NF-kappaB trans-activation shares the IL-1R signaling molecules. Dominant negative constructs of TLR2 or TLR6 inhibit the responses of STF and OspA-L as well as PSM in TLR2-transfected HMEC, supporting the concept of functional cooperation between TLR2 and TLR6 for all these TLR2 ligands. Moreover, we show that Toll-interacting protein (Tollip) coimmunoprecipitates with TLR2 and TLR4 using HEK 293 cells, and overexpression of Tollip inhibits NF-kappaB activation in response to TLR2 and TLR4 signaling. Collectively, these findings suggest that there is functional interaction between TLR2 and TLR6 in the cellular response to STF and OspA-L in addition to S. epidermidis (PSM) Ags, and that engagement of TLR2 triggers a signaling cascade, which shares the IL-1R signaling molecules, similar to the TLR4-LPS signaling cascade. Our data also suggest that Tollip may be an important constituent of both the TLR2 and TLR4 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号