首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 19 huprines has been evaluated for their activity against cultured bloodstream forms of Trypanosoma brucei and Plasmodium falciparum. Moreover, cytotoxicity against rat myoblast L6 cells was assessed for selected huprines. All the tested huprines are moderately potent and selective trypanocidal agents, exhibiting IC(50) values against T. brucei in the submicromolar to low micromolar range and selectivity indices for T. brucei over L6 cells of approximately 15, thus constituting interesting trypanocidal lead compounds. Two of these huprines were also found to be active against a chloroquine-resistant strain of P. falciparum, thus emerging as interesting trypanocidal-antiplasmodial dual acting compounds, but they exhibited little selectivity for P. falciparum over L6 cells.  相似文献   

2.
The potency of a series of sulfonamide tubulin inhibitors against the growth of Trypanosoma brucei (T. brucei), as well as human cancer and primary fibroblast cells were evaluated with the aim of determining whether compounds that selectively inhibit parasite proliferation could be identified. Several compounds showed excellent selectivity against T. brucei growth, and have the potential to be used for the treatment of Human African trypanosomiasis. A T. brucei tubulin protein homology model was built based on the crystal structure of the bovine tubulin. The colchicine-binding domain, which is also the binding site of the tested sulfonamide tubulin inhibitors, showed clear differences between the tubulin structures and presumably explained the selectivity of the compounds.  相似文献   

3.
In the interest of identification of new kinase-targeting chemotypes for target and pathway analysis and drug discovery in Trypanosomal brucei, a high-throughput screen of 42,444 focused inhibitors from the GlaxoSmithKline screening collection was performed against parasite cell cultures and counter-screened against human hepatocarcinoma (HepG2) cells. In this way, we have identified 797 sub-micromolar inhibitors of T. brucei growth that are at least 100-fold selective over HepG2 cells. Importantly, 242 of these hit compounds acted rapidly in inhibiting cellular growth, 137 showed rapid cidality. A variety of in silico and in vitro physicochemical and drug metabolism properties were assessed, and human kinase selectivity data were obtained, and, based on these data, we prioritized three compounds for pharmacokinetic assessment and demonstrated parasitological cure of a murine bloodstream infection of T. brucei rhodesiense with one of these compounds (NEU-1053). This work represents a successful implementation of a unique industrial-academic collaboration model aimed at identification of high quality inhibitors that will provide the parasitology community with chemical matter that can be utilized to develop kinase-targeting tool compounds. Furthermore these results are expected to provide rich starting points for discovery of kinase-targeting tool compounds for T. brucei, and new HAT therapeutics discovery programs.  相似文献   

4.
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.  相似文献   

5.
Cryptolepine derivatives containing alkyldiamine side-chains, 2, with potent inhibitory activity against Trypanosoma brucei brucei are reported. Compounds 2 showed improved activity and selectivity to T. b. brucei when compared to the lead compound. The most selective compound, 2k, presents a selectivity index value of 6200 and an IC(50) of 10nM against the parasite. These derivatives are also potent inhibitors of the trypanosome papain-like cysteine proteases cruzain, which could, at least in part, explain their antitrypanosomal activity. Overall, these compounds with good antitrypanosomal activity and selectivity provide an encouraging starting point for the rational design of new and effective antitrypanosomal agents.  相似文献   

6.
A series of halo-nitrobenzamide were synthesized and evaluated for their ability to block proliferation of Trypanosoma brucei brucei. A number of these compounds had significant activity against the parasite, particularly 2-chloro-N-(4-chlorophenyl)-5-nitrobenzamide 17 which exhibited low micromolar inhibitory potency against T. brucei and selectivity towards both malaria and mammalian cells.  相似文献   

7.
Sugar derivatives mimicking compounds which take part in the catalysed reaction have been assayed as alternative substrates and/or competitive inhibitors of 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Phosphonate analogues have been synthesised and the new compound 5-deoxy-5-phosphono-D-arabinonate shows good selectivity towards the parasite enzyme. A number of 4-carbon and 5-carbon aldonates are strong inhibitors of the parasite enzyme with K(i) values below the substrate K(m) and some acyl derivatives are also potent inhibitors. At least five of the compounds showing a significant selectivity for the parasite enzyme represent leads for trypanocidal drugs against this recently validated target.  相似文献   

8.
Better drugs are urgently needed for the treatment of African sleeping sickness. We tested a series of promising anticancer agents belonging to the 4-substituted 4-hydroxycyclohexa-2,5-dienones class ("quinols") and identified several with potent trypanocidal activity (EC(50) < 100 nM). In mammalian cells, quinols are proposed to inhibit the thioredoxin/thioredoxin reductase system, which is absent from trypanosomes. Studies with the prototypical 4-benzothiazole-substituted quinol, PMX464, established that PMX464 is rapidly cytocidal, similar to the arsenical drug, melarsen oxide. Cell lysis by PMX464 was accelerated by addition of sublethal concentrations of glucose oxidase implicating oxidant defenses in the mechanism of action. Whole cells treated with PMX464 showed a loss of trypanothione (T(SH)(2)), a unique dithiol in trypanosomes, and tryparedoxin peroxidase (TryP), a 2-Cys peroxiredoxin similar to mammalian thioredoxin peroxidase. Enzyme assays revealed that T(SH)(2), TryP, and a glutathione peroxidase-like tryparedoxin-dependent peroxidase were inhibited in time- and concentration-dependent manners. The inhibitory activities of various quinol analogues against these targets showed a good correlation with growth inhibition of Trypanosoma brucei. The monothiols glutathione and L-cysteine bound in a 2:1 ratio with PMX464 with K(d) values of 6 and 27 μM, respectively, whereas T(SH)(2) bound more tightly in a 1:1 ratio with a K(d) value of 430 nM. Overexpression of trypanothione synthetase in T. brucei decreased sensitivity to PMX464 indicating that the key metabolite T(SH)(2) is a target for quinols. Thus, the quinol pharmacophore represents a novel lead structure for the development of a new drug against African sleeping sickness.  相似文献   

9.
Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.  相似文献   

10.
The African trypanosome Trypanosoma brucei has a digenetic life cycle that involves the insect vector and the mammalian host. This is underscored by biochemical switches in its nutritional requirements. In the insect vector, the parasite relies on amino acid catabolism, but in the mammalian host, it derives its energy exclusively from blood glucose. Glucose transport is facilitated, and constitutes the rate-limiting step in ATP synthesis. Here, we report the cloning of a novel glucose transporter-related gene by heterologous screening of a lambdaEMBL4 genomic library of T. brucei EATRO 164 using a rat liver glucose transporter cDNA clone. Genomic analysis shows that the gene is present as a single copy within the parasite genome. The gene encodes a protein with an estimated molecular mass of 55.9 kDa, which shares only segmental homology with members of the glucose transporter superfamily. Several potential post-translational modification sites including phosphorylation, N-glycosylation, and cotranslational myristoylation sites also punctuate the sequence. It is distinguished from classical transporter proteins by the absence of putative hydrophobic membrane-spanning domains. However, this protein was capable of complementing Schizosaccharomyces pombe glucose transporter mutants. The rescued phenotype conferred the ability of the cells to grow on a broad range of sugars, both monosaccharides and disaccharides. The kinetics of glucose uptake reflected those in T. brucei. In addition to complementation in yeast, we also showed that the gene enhanced glucose uptake in cultured mammalian cells.  相似文献   

11.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

12.
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill.  相似文献   

13.
This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity.  相似文献   

14.
A selection of 76 nitroheterocycles and related compounds from our in-house compound library was screened in vitro against the parasite Trypanosoma brucei rhodesiense, causative agent of human African trypanosomiasis (HAT). The unspecific cytotoxicity of the compounds was also evaluated against rat myoblast L6-cells to measure the selectivity of the compounds towards the parasite. This screening revealed some preliminary structure-activity relationships (SAR) among the series, and six hit compounds showing interesting activity (IC(50)≤10μM) and fair selectivity (SI>17). The 7-nitroquinoxalin-2-one and 5-nitroindazole scaffold derivatives 58 and 35, respectively, are particularly interesting because of their established oral bioavailability in mice. These hits represent interesting starting points for a medicinal project aimed at identifying the SAR behind this class of compounds.  相似文献   

15.
The presence of an uptake mechanism for uracil in procyclic forms of the protozoan parasite Trypanosoma brucei brucei was investigated. Uptake of [3H]uracil at 22 degrees C was rapid and saturable and appeared to be mediated by a single high-affinity transporter, designated U1, with an apparent Km of 0.46 +/- 0.09 microM and a Vmax of 0.65 +/- 0.08 pmol x (10(7) cells)(-1) x s(-1). [3H]Uracil uptake was not inhibited by a broad range of purine and pyrimidine nucleosides and nucleobases (concentrations up to 1 mM), with the exception of uridine, which acted as an apparent weak inhibitor (Ki value of 48 +/- 15 microM). Similarly, most chemical analogues of uracil, such as 5-chlorouracil, 3-deazauracil, and 2-thiouracil, had little or no affinity for the U1 carrier. Only 5-fluorouracil was found to be a relatively potent inhibitor of uracil uptake (Ki = 3.2 +/- 0.4 microM). Transport of uracil was independent of extracellular sodium and potassium gradients, as replacement of NaCl in the assay buffer by N-methyl-D-glucamine, KCl, LiCl, CsCl, or RbCl did not affect initial rates of transport. However, the proton ionophore carbonyl cyanide chlorophenylhydrazone inhibited up to 70% of [3H]uracil flux. These data show that uracil uptake in T. b. brucei procyclics is mediated by a single high-affinity transporter with high substrate selectivity and are consistent with a nucleobase-H+-symporter model for this carrier.  相似文献   

16.
Nucleotide biosynthesis pathways have been reported to be essential in some protozoan pathogens. Hence, we evaluated the essentiality of one enzyme in the pyrimidine biosynthetic pathway, dihydroorotate dehydrogenase (DHODH) from the eukaryotic parasite Trypanosoma brucei through gene knockdown studies. RNAi knockdown of DHODH expression in bloodstream form T. brucei did not inhibit growth in normal medium, but profoundly retarded growth in pyrimidine-depleted media or in the presence of the known pyrimidine uptake antagonist 5-fluorouracil (5-FU). These results have significant implications for the development of therapeutics to combat T. brucei infection. Specifically, a combination therapy including a T. brucei -specific DHODH inhibitor plus 5-FU may prove to be an effective therapeutic strategy. We also show that this trypanosomal enzyme is inhibited by known inhibitors of bacterial Class 1A DHODH, in distinction to the sensitivity of DHODH from human and other higher eukaryotes. This selectivity is supported by the crystal structure of the T. brucei enzyme, which is reported here at a resolution of 1.95 Å. Additional research, guided by the crystal structure described herein, is needed to identify potent inhibitors of T. brucei DHODH.  相似文献   

17.
A series of 5-thiocyanatomethyl- and 5-alkyl-3-aryl-1,2,4-oxadiazoles were synthesized and evaluated for their activity against kinetoplastid parasites. Formation of the oxadiazole ring was accomplished through the reaction of benzamidoximes with acyl chlorides, while the thiocyanate group was inserted by reacting the appropriate 5-halomethyl oxadiazole with ammonium thiocyanate. The thiocyanate-containing compounds possessed low micromolar activity against Leishmania donovani and Trypanosoma brucei, while the 5-alkyl oxadiazoles were less active against these parasites. 3-(4-Chlorophenyl)-5-(thiocyanatomethyl)-1,2,4-oxadiazole (compound 4b) displayed modest selectivity for L. donovani axenic amastigote-like parasites over J774 macrophages, PC3 prostate cancer cells, and Vero cells (6.4-fold, 3.8-fold, and 9.1-fold, respectively), while 3-(3,4-dichlorophenyl)-5-(thiocyanatomethyl)-1,2,4-oxadiazole (compound 4 h) showed 30-fold selectivity against Vero cells but was not selective against PC3 cells. In a murine model of visceral leishmaniasis, compound 4b decreased liver parasitemia caused by L. donovani by 48% when given in five daily i.v. doses at 5mg/kg and by 61% when administered orally for 5 days at 50 mg/kg. These results indicate that aromatic thiocyanates hold promise for the treatment of leishmanial infections if the selectivity of these compounds can be improved.  相似文献   

18.
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.  相似文献   

19.
There are currently only four clinical drugs available for treating human African trypanosomiasis (HAT), three of which were developed over 60 years ago. Despite years of effort, there has been relatively little progress towards identifying orally available chemotypes active against the parasite in vivo. Here, we report the lead optimization of a purine-nitrile scaffold that inhibits the essential TbcatB protease and its evaluation in murine models. A lead inhibitor that had potent activity against the trypanosomal protease TbcatB in vitro and cultured parasites ex vivo was optimized by rationally driven medicinal chemistry to an inhibitor that is orally available, penetrates the CNS, has a promising pharmacokinetic profile, and is non-toxic at 200mg/kg in a repeat dosage study. Efficacy models using oral administration of this lead inhibitor showed a significantly increased survival time in Trypanosoma brucei brucei infected mice but little effect on Trypanosoma brucei rhodesiense infected mice.  相似文献   

20.
Previously synthesized tubulin inhibitors showed promising in vitro selectivity and activity against Human African Trypanosomiasis. Current aim is to improve the ligand efficiency and reduce overall hydrophobicity of the compounds, by lead optimization. Via combinatorial chemistry, 60 new analogs were synthesized. For biological assay Trypanosoma brucei brucei Lister 427 cell line were used as the parasite model and for the host model human embryonic kidney cell line HEK-293 and mouse macrophage cell line RAW 264.7 were used to test efficacy. Of the newly synthesized compounds 5, 39, 40, and 57 exhibited IC50s below 5?µM inhibiting the growth of trypanosome cells and not harming the mammalian cells at equipotent concentration. Comparably, the newly synthesized compounds have a reduced amount of aromatic moieties resulting in a decrease in molecular weight. Due to importance of tubulin polymerization during protozoan life cycle its activity was assessed by western blot analyses. Our results indicated that compound 5 had a profound effect on tubulin function. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号