首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Byrne KP  Wolfe KH 《Genetics》2007,175(3):1341-1350
We investigated patterns of rate asymmetry in sequence evolution among the gene pairs (ohnologs) formed by whole-genome duplication (WGD) in yeast species. By comparing three species (Saccharomyces cerevisiae, Candida glabrata, and S. castellii) that underwent WGD to a nonduplicated outgroup (Kluyveromyces lactis), and by using a synteny framework to establish orthology and paralogy relationships at each duplicated locus, we show that 56% of ohnolog pairs show significantly asymmetric protein sequence evolution. For ohnolog pairs that remain duplicated in two species there is a strong tendency for the faster-evolving copy in one species to be orthologous to the faster copy in the other species, which indicates that the evolutionary rate differences were established before speciation and hence soon after the WGD. We also present evidence that in cases where one ohnolog has been lost from the genome of a post-WGD species, the lost copy was likely to have been the faster-evolving member of the pair prior to its loss. These results suggest that a significant fraction of the retained ohnologs in yeast species underwent neofunctionalization soon after duplication.  相似文献   

2.
3.
4.
Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred ~6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.  相似文献   

5.
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent “explosion” of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial “wave” of rediploidization in the late Cretaceous (85–106 Ma). This was followed by a period of relative genomic stasis lasting 17–39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.  相似文献   

6.
《Genomics》2022,114(4):110394
The magnoliid Litsea coreana has been the subject of a substantial amount of research owing to its production of many flavonoid metabolites, high food processing value, and a controversial phylogenetic position. For this study, we assembled a high-grade genome at the chromosome scale and annotation of L. coreana that was anchored to 12 chromosomes. The total genome was 1139.45 Mb, while the N50 scaffold was 97.18 Mb long. The analysis of phylogenetic trees constructed by different methods show that the phylogeny of Magnoliids is inconsistent, indicating that the differentiation process of monocots, eudicots, and Magnoliids still remains in dispute. An ancient whole-genome duplication (WGD) event was shown to have occurred before the Magnoliales and Laurels had differentiated. Subsequently, an independent WGD appeared in the Lauralean lineage. A total of 27 types of flavonoids were detected in all five tissues of L. coreana. Chalcone synthases (CHSs) that are responsible for production of flavonoids have been validated at the bioinformatics level. The retention of comparative genomic analyses of the CHS gene family showed that this family had contracted significantly in L. coreana. Our research further elaborated the evolution of Lauraceae and perfected the genetic basis of flavonoid biosynthesis in L. coreana.Significance statementProvides evidence that determines the evolutionary status of Magnoliids. The chalcone synthase gene family was significantly contracted in Litsea coreana.  相似文献   

7.
The abundance of detected ancient polyploids in extant genomes raises questions regarding evolution after whole-genome duplication (WGD). For instance, what rules govern the preservation or loss of the duplicated genes created by WGD? We explore this question by contrasting two possible preservation forces: selection on relative and absolute gene dosages. Constraints on the relative dosages of central network genes represent an important force for maintaining duplicates (the dosage balance hypothesis). However, preservation may also result from selection on the absolute abundance of certain gene products. The metabolic network of the model plant Arabidopsis thaliana is a powerful system for comparing these hypotheses. We analyzed the surviving WGD-produced duplicate genes in this network, finding evidence that the surviving duplicates from the most recent WGD (WGD-α) are clustered in the network, as predicted by the dosage balance hypothesis. A flux balance analysis suggests an association between the survival of duplicates from a more ancient WGD (WGD-β) and reactions with high metabolic flux. We argue for an interplay of relative and absolute dosage constraints, such that the relative constraints imposed by the recent WGD are still being resolved by evolution, while they have been essentially fully resolved for the ancient event.  相似文献   

8.
Gene duplication and divergence are important evolutionary processes. It has been suggested that a whole genome duplication (WGD) event occurred in the Gramineae, predating its divergence, and a second WGD occurred in maize during its evolution. In this study we compared the fate of the genes involved in the core pathway of starch biosynthesis following the ancient and second WGDs in maize and rice. In total, thirty starch synthesis genes were detected in the maize genome, which covered all the starch synthesis gene families encoded by 27 genes in rice. All of these genes, except ZmGBSSIIb and ZmBEIII, are anchored within large-scale synteny blocks of rice and maize chromosomes. Previous findings and our results indicate that two of the current copies of many starch synthesis genes (including AGPL, AGPS, GBSS, SSII, SSIII, and BEII) probably arose from the ancient WGD in the Gramineae and are still present in the maize and rice genome. Furthermore, two copies of at least six genes (AGPS1, SSIIb, SSIIIb, GBSSII, BEI, and ISA3) appear to have been retained in the maize genome after its second WGD, although complete coding regions were only detected among the duplicate sets of AGPS1, SSIIb, and SSIIIb. The expression patterns of the remaining duplicate sets of starch synthesis genes (AGPL1/2, AGPS1/2, SSIIa/b, SSIIIa/b, GBSSI/II, and BEIIa/b) differ in their expression and could be classified into two groups in maize. The first group is mainly expressed in the endosperm, whereas the second is expressed in other organs and the early endosperm development. The four duplicate sets of ZmGBSSII, ZmSSIIb, ZmSSIIIb and AGPS1, which arose from the second WGD diverged in gene structure and/or expression patterns in maize. These results indicated that some duplicated starch synthesis genes were remained, whereas others diverged in gene structure and/or expression pattern in maize. For most of the duplicated genes, one of the copies has disappeared in the maize genome after the WGD and the subsequent “diploidization”. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
J. H. Nadeau  D. Sankoff 《Genetics》1997,147(3):1259-1266
Duplicated genes are an important source of new protein functions and novel developmental and physiological pathways. Whereas most models for fate of duplicated genes show that they tend to be rapidly lost, models for pathway evolution suggest that many duplicated genes rapidly acquire novel functions. Little empirical evidence is available, however, for the relative rates of gene loss vs. divergence to help resolve these contradictory expectations. Gene families resulting from genome duplications provide an opportunity to address this apparent contradiction. With genome duplication, the number of duplicated genes in a gene family is at most 2(n), where n is the number of duplications. The size of each gene family, e.g., 1, 2, 3, . . . , 2(n), reflects the patterns of gene loss vs. functional divergence after duplication. We focused on gene families in humans and mice that arose from genome duplications in early vertebrate evolution and we analyzed the frequency distribution of gene family size, i.e., the number of families with two, three or four members. All the models that we evaluated showed that duplicated genes are almost as likely to acquire a new and essential function as to be lost through acquisition of mutations that compromise protein function. An explanation for the unexpectedly high rate of functional divergence is that duplication allows genes to accumulate more neutral than disadvantageous mutations, thereby providing more opportunities to acquire diversified functions and pathways.  相似文献   

10.
11.
Polyploidy and angiosperm diversification   总被引:2,自引:0,他引:2  
Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.  相似文献   

12.
Current hypotheses of gene duplicate divergence propose that surviving members of a gene duplicate pair may evolve, under conditions of purifying or nearly neutral selection, in one of two ways: with new function arising in one duplicate while the other retains original function (neofunctionalization [NF]) or partitioning of the original function between the 2 paralogs (subfunctionalization [SF]). More recent studies propose that SF followed by NF (subneofunctionalization [SNF]) explains the divergence of many duplicate genes. In this analysis, we evaluate these hypotheses in the context of the large monosaccharide transporter (MST) gene families in Arabidopsis and rice. MSTs have an ancient origin, predating plants, and have evolved in the seed plant lineage to comprise 7 subfamilies. In Arabidopsis, 53 putative MST genes have been identified, with one subfamily greatly expanded by tandem gene duplications. We searched the rice genome for members of the MST gene family and compared them with the MST gene family in Arabidopsis to determine subfamily expansion patterns and estimate gene duplicate divergence times. We tested hypotheses of gene duplicate divergence in 24 paralog pairs by comparing protein sequence divergence rates, estimating positive selection on codon sites, and analyzing tissue expression patterns. Results reveal the MST gene family to be significantly larger (65) in rice with 2 subfamilies greatly expanded by tandem duplications. Gene duplicate divergence time estimates indicate that early diversification of most subfamilies occurred in the Proterozoic (2500-540 Myr) and that expansion of large subfamilies continued through the Cenozoic (65-0 Myr). Two-thirds of paralog pairs show statistically symmetric rates of sequence evolution, most consistent with the SF model, with half of those showing evidence for positive selection in one or both genes. Among 8 paralog pairs showing asymmetric divergence rates, most consistent with the NF model, nearly half show evidence of positive selection. Positive selection does not appear in any duplicate pairs younger than approximately 34 Myr. Our data suggest that the NF, SF, and SNF models describe different outcomes along a continuum of divergence resulting from initial conditions of relaxed constraint after duplication.  相似文献   

13.
Genome evolution arises from two main ways of duplication and reduction. Fish specific genome duplication (FSGD) may have occurred before the radiation of the teleosts. Common carp (Cyprinus carpio L.) has been considered to be a tetraploid species, because of its chromosome numbers (2n=100) and its high DNA content. Using 69 microsatellite primer pairs, the variations were studied to better understand the genome evolution (genome duplication and diploidization) of common carp from a gynogenetic family. About 48% of primer pairs were estimated to amplify duplicates based on the number of PCR amplification per individual. Segregation patterns in the family suggested a partially duplicated genome structure and disomic inheritance. This indicates that the common carp is tetraploid and polyploidy occurred by allotetraploidy. Two primer pairs (HLJ021 and HLJ332) were estimated to amplify reduction based on the number of PCR amplification per individual. One allele in HLJ002 locus and HLJ332 locus was clearly lost in the gynogenetic family and the same as in six wild populations. Segregation patterns in the family suggested a partially diplodization genome structure. A hypothesis transition (dynamic) and equilibrium (static) were proposed to explain the common carp genome evolution between genome duplication and diploidization.  相似文献   

14.
Whole-genome duplication (WGD) is believed to be one of the major evolutionary events that shaped the genome organization of vertebrates. Here, we review recent research on vertebrate genome evolution, specifically on WGD and its consequences for gene and genome evolution in teleost fishes. Recent genome analyses confirmed that all vertebrates experienced two rounds of WGD early in their evolution, and that teleosts experienced a subsequent additional third-round (3R)-WGD. The 3R-WGD was estimated to have occurred 320–400 million years ago in a teleost ancestor, but after its divergence from a common ancestor with living non-teleost actinopterygians (Bichir, Sturgeon, Bowfin, and Gar) based on the analyses of teleost-specific duplicate genes. This 3R-WGD was confirmed by synteny analysis and ancestral karyotype inference using the genome sequences of Tetraodon and medaka. Most of the tetrapods, on the other hand, have not experienced an additional WGD; however, they have experienced repeated chromosomal rearrangements throughout the whole genome. Therefore, different types of chromosomal events have characterized the genomes of teleosts and tetrapods, respectively. The 3R-WGD is useful to investigate the consequences of WGD because it is an evolutionarily recent WGD and thus teleost genomes retain many more WGD-derived duplicates and “traces” of their evolution. In addition, the remarkable morphological, physiological, and ecological diversity of teleosts may facilitate understanding of macrophenotypic evolution on the basis of genetic/genomic information. We highlight the teleosts with 3R-WGD as unique models for future studies on ecology and evolution taking advantage of emerging genomics technologies and systems biology environments.  相似文献   

15.
Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.  相似文献   

16.
Semyonov J  Park JI  Chang CL  Hsu SY 《PloS one》2008,3(4):e1903
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8-15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs--threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.  相似文献   

17.
Macaca mulatta, M. cyclopis and M. fuscata are three closely related species in the fascicularis species group. M. mulatta is wide-spread in Asia, while M. cyclopis and M. fuscata are restricted to Taiwan and Japan, respectively. Both M. cyclopis and M. fuscata are thought to be derived from ancient 'mulatta' populations in the eastern Asia. In this study, we analyzed sequences of mitochondrial DNA control region to provide genetic evidence for the evolution and dispersal scenario of the three species proposed by Fooden and Albrecht [Fooden, J., Albrecht, G.H. 1999. Tail-length evolution in fascicularis-group macaques (Cercopithecidae: Macaca). Int. J. Primatol. 20, 431-440]. Our results indicated that several localities in the southern China and Vietnam harbored multiple divergent mtDNA lineages that may not have evolved sympatrically. These divergent mtDNA lineages may have originated from different ancient northern populations that retreated into southern localities during glacial periods. However, the age of the southward retreat and the northward recolonization may be dated back to a more ancient past during late middle Pleistocene (0.12-0.18 mya) instead of during the LGM (0.018 mya). Times of gene divergence between M. mulatta and the two island species, estimated by mean nucleotide difference, suggest the ancestral populations colonized Taiwan and Japan around 0.38-0.44 mya. In addition, a more recent age of mulatta-cyclopis-fuscata population divergence (when ancient populations were isolated), estimated to be 0.17 mya by net nucleotide divergence, is suggested.  相似文献   

18.
19.
Genetic mapping studies have suggested that diploid cotton (Gossypium) might be an ancient polyploid. However, further evidence is lacking due to the complexity of the genome and the lack of sequence resources. Here, we used the grape (Vitis vinifera) genome as an out-group in two different approaches to further explore evidence regarding ancient genome duplication (WGD) event(s) in the diploid Gossypium lineage and its (their) effects: a genome-level alignment analysis and a local-level sequence component analysis. Both studies suggest that at least one round of genome duplication occurred in the Gossypium lineage. Also, gene densities in corresponding regions from Gossypium raimondii, V. vinifera, Arabidopsis thaliana and Carica papaya genomes are similar, despite the huge difference in their genome sizes and the different number of WGDs each genome has experienced. These observations fit the model that differences in plant genome sizes are largely explained by transposon insertions into heterochromatic regions.  相似文献   

20.
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号