首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screening for brassinosteroid (BR) biosynthesis inhibitors was performed to find chemicals that induce dwarfism in Arabidopsis, mutants that resembled BR biosynthesis mutants that can be rescued by BR. Through this screening experiment, the compound brassinazole was selected as the most potent chemical. In dark-grown Arabidopsis, brassinazole-induced morphological changes were nearly restored to those of wild type by treatment with brassinolide. The structure of brassinazole is similar to pacrobutrazol, a gibberellin biosynthesis inhibitor. However, in assays with cress (Lepidium sativum) plants, brassinazole-treated plants did not show recovery after the addition of gibberellin but showed good recovery after the addition of brassinolide. These data demonstrate that brassinazole is a specific BR biosynthesis inhibitor. Brassinazole-treated cress also showed dwarfism, with altered leaf morphology, including the downward curling and dark green color typical of Arabidopsis BR-deficient mutants, and this dwarfism was reversed by the application of 10 nM brassinolide. This result suggests that BRs are essential for plant growth, and that brassinazole can be used to clarify the function of BRs in plants as a complement to BR-deficient mutants. The brassinazole action site was also investigated by feeding BR biosynthesis intermediates to cress grown in the light.  相似文献   

2.
A series of 5-substituted pyrimidine derivatives was synthesized, and their ability to inhibit brassinosteroid biosynthesis was tested. The biological activity of these compounds was evaluated by the cress stem elongation method. Among the synthesized compounds, alpha-(4-chlorophenyl)-alpha-phenyl-5-pyrimidinemethanol (DPPM 4) exhibited potent inhibitory activity for retarding cress stem elongation in the light. This inhibition was reversed by the application of 10 nM brassinolide, but not by 1 microM GA3. DPPM 4 also affected Arabidopsis growth in the dark. DPPM 4-treated Arabidopsis had phenotypes like those of brassinosteroid-deficient mutants, with short hypocotyls and open cotyledons, in the dark. These biological changes were restored by the co-application of 10 nM brassinolide, but not by 1 microM GA3, suggesting that the primary site of action of DPPM 4 was the brassinosteroid biosynthetic pathway.  相似文献   

3.
Brassinosteroids (BRs) are phytohormones that control several important agronomic traits, such as flowering, plant architecture, seed yield, and stress tolerance. To manipulate the BR levels in plant tissues using specific inhibitors of BR biosynthesis, a series of novel azole derivatives were synthesized and their inhibitory activity on BR biosynthesis was investigated. Structure–activity relationship studies revealed that 2RS, 4RS-1-[4-(2-allyloxyphenoxymethyl)-2-(4-chlorophenyl)-[1,3]dioxolan-2-ylmethyl]-1H-[1,2,4]triazole (G2) is a highly selective inhibitor of BR biosynthesis, with an IC50 value of approximately 46 ± 2 nM, which is the most potent BR biosynthesis inhibitor observed to date. Use of gibberellin (GA) biosynthesis mutants and BR signaling mutants to analyze the mechanism of action of this synthetic series indicated that the primary site of action is BR biosynthesis. Experiments feeding BR biosynthesis intermediates to chemically treated Arabidopsis seedlings suggested that the target sites of this synthetic series are CYP90s, which are responsible for the C-22 and/or C-23 hydroxylation of campesterol.  相似文献   

4.
Brassinosteroids (BRs) are steroidal hormones that play pivotal roles during plant development. In addition to the characterization of BR deficient mutants, specific BR biosynthesis inhibitors played an essential role in the elucidation of BR function in plants. However, high costs and limited availability of common BR biosynthetic inhibitors constrain their key advantage as a species-independent tool to investigate BR function. We studied propiconazole (Pcz) as an alternative to the BR inhibitor brassinazole (Brz). Arabidopsis seedlings treated with Pcz phenocopied BR biosynthetic mutants. The steady state mRNA levels of BR, but not gibberellic acid (GA), regulated genes increased proportional to the concentrations of Pcz. Moreover, root inhibition and Pcz-induced expression of BR biosynthetic genes were rescued by 24epi-brassinolide, but not by GA(3) co-applications. Maize seedlings treated with Pcz showed impaired mesocotyl, coleoptile, and true leaf elongation. Interestingly, the genetic background strongly impacted the tissue specific sensitivity towards Pcz. Based on these findings we conclude that Pcz is a potent and specific inhibitor of BR biosynthesis and an alternative to Brz. The reduced cost and increased availability of Pcz, compared to Brz, opens new possibilities to study BR function in larger crop species.  相似文献   

5.
To better understand genetic regulation of differential growth of plant organs, a dominant and semidwarf mutant, constitutive differential growth 1-Dominant (cdg1-D), was isolated utilizing the technique of activation tagging. cdg1-D showed pleiotropic phenotype including dwarfism, exaggerated leaf epinasty, and twisted or spiral growth in hypocotyl, inflorescence stem, and petiole. Hypocotyls of cdg1-D were longer than those of wild type under light conditions. The phenotype was caused by activation tagging of CDG1 gene that encodes a receptor-like cytoplasmic kinase of RLCKVII subfamily. When treated with high concentrations of brassinolide, light-grown wild-type seedlings showed long hypocotyls and strong leaf epinasty as observed in cdg1-D seedlings. Treatment of cdg1-D with brassinazole, a specific inhibitor of brassinosteroid (BR) biosynthesis, did not rescue the mutant phenotype. Gene expression of CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM involved in BR biosynthesis and phyB ACTIVATION-TAGGED SUPPRESSOR1 that inactivates BR was repressed and induced, respectively, in cdg1-D plants, suggesting constitutive activation of BR signaling in the mutant. CDG1 was expressed at a very low level in all the organs of the wild type tested. We isolated two independent intragenic suppressors of cdg1-D. However, they showed normal morphology and responded to BR in a similar manner to wild type. Taken together, CDG1 gene may interfere with signal transduction of BR when overexpressed, but is not an essential factor for it in the wild type.  相似文献   

6.
Brassinazole, a synthetic chemical developed in our laboratory, is a triazole-type brassinosteroid biosynthesis inhibitor that induces dwarfism in various plant species. The target sites of brassinazole were investigated by chemical analyses of endogenous brassinosteroids (BRs) in brassinazole-treated Catharanthus roseus cells. The levels of castasterone and brassinolide in brassinazole-treated plant cells were less than 6% of the levels in untreated cells. In contrast, campestanol and 6-oxocampestanol levels were increased, and levels of BR intermediates with hydroxy groups on the side chains were reduced, suggesting that brassinazole treatment reduced BR levels by inhibiting the hydroxylation of the C-22 position. DWF4, which is an Arabidopsis thaliana cytochrome P450 isolated as a putative steroid 22-hydroxylase, was expressed in Escherichia coli, and the binding affinity of brassinazole and its derivatives to the recombinant DWF4 were analyzed. Among several triazole derivatives, brassinazole had both the highest binding affinity to DWF4 and the highest growth inhibitory activity. The binding affinity and the activity for inhibiting hypocotyl growth were well correlated among the derivatives. In brassinazole-treated A. thaliana, the CPD gene involved in BR biosynthesis was induced within 3 h, most likely because of feedback activation caused by the reduced levels of active BRs. These results indicate that brassinazole inhibits the hydroxylation of the C-22 position of the side chain in BRs by direct binding to DWF4 and that DWF4 catalyzes this hydroxylation reaction.  相似文献   

7.
Brassinosteroid biosynthesis and inactivation   总被引:5,自引:0,他引:5  
The term brassinosteroids (BRs) refers to the growth-promoting plant steroidal hormones. Various developmental programs including but not limited to cell elongation, stress tolerance, and skoto-/photo-morphogenesis are controlled by subnanomolar concentrations of BRs. Accordingly, BR mutants that are defective in BR biosynthetic or signaling pathways usually display dwarfism. Characterization of numerous BR dwarf mutants isolated from Arabidopsis , pea, tomato, and rice greatly contributed to our understanding of BR biology. Recently, an enzyme that mediates the final step in the BR biosynthetic pathways has been characterized by two different groups. The brassinolide synthases (Cytochrome P450s 85A2 and 85A3) are multifunctional enzymes that catalyze the last three consecutive steps in BR biosynthetic pathways, namely, C-6 hydroxylation, dehydrogenation, and Baeyer-Villiger type oxidation. In addition, many of the previously unknown steps have been genetically characterized. This review aims to summarize the knowledge that has been developed during the last 2–3 years in this field of BR biosynthesis and inactivation research.  相似文献   

8.
In this study, we examined the regulation by putrescine, spermidine and spermine of nitric oxide (NO) biosynthesis in Arabidopsis thaliana seedlings. Using a fluorimetric method employing the cell-impermeable NO-binding dye diaminorhodamine-4M (DAR-4M), we observed that the polyamines (PAs) spermidine and spermine greatly increased NO release in the seedlings, whereas arginine and putrescine had little or no effect. Spermine, the most active PA, stimulated NO release with no apparent lag phase. The response was quenched by addition of 2-aminoethyl-2-thiopseudourea (AET), an inhibitor of the animal nitric oxide synthase (NOS) and plant NO biosynthesis, and by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO), an NO scavenger. By fluorescence microscopy, using the cell-permeable NO-binding dye diaminorhodamine-4M acetoxymethyl ester (DAR-4M AM), we observed that PAs induced NO biosynthesis in specific tissues in Arabidopsis seedlings. Spermine and spermidine increased NO biosynthesis in the elongation zone of the Arabidopsis root tip and in primary leaves, especially in the veins and trichomes, while in cotyledons little or no effect of PAs beyond the endogenous levels of NO-induced fluorescence was observed. We conclude that PAs induce NO biosynthesis in plants.  相似文献   

9.
10.
Homeostasis of brassinosteroids (BRs) is essential for normal growth and development in higher plants. We examined responsiveness of 11 BR metabolic gene expressions to the decrease or increase of endogenous BR contents in Arabidopsis (Arabidopsis thaliana) to expand our knowledge of molecular mechanisms underlying BR homeostasis. Five BR-specific biosynthesis genes (DET2, DWF4, CPD, BR6ox1, and ROT3) and two sterol biosynthesis genes (FK and DWF5) were up-regulated in BR-depleted wild-type plants grown under brassinazole, a BR biosynthesis inhibitor. On the other hand, in BR-excessive wild-type plants that were fed with brassinolide, four BR-specific synthesis genes (DWF4, CPD, BR6ox1, and ROT3) and a sterol synthesis gene (DWF7) were down-regulated and a BR inactivation gene (BAS1) was up-regulated. However, their response to fluctuation of BR levels was highly reduced (DWF4) or nullified (the other eight genes) in a bri1 mutant. Taken together, our results imply that BR homeostasis is maintained through feedback expressions of multiple genes, each of which is involved not only in BR-specific biosynthesis and inactivation, but also in sterol biosynthesis. Our results also indicate that their feedback expressions are under the control of a BRI1-mediated signaling pathway. Moreover, a weak response in the mutant suggests that DWF4 alone is likely to be regulated in other way(s) in addition to BRI1 mediation.  相似文献   

11.
12.
Ullah H  Chen JG  Wang S  Jones AM 《Plant physiology》2002,129(2):897-907
Seed germination is regulated by many signals. We investigated the possible involvement of a heterotrimeric G protein complex in this signal regulation. Seeds that carry a protein null mutation in the gene encoding the alpha subunit of the G protein in Arabidopsis (GPA1) are 100-fold less responsive to gibberellic acid (GA), have increased sensitivity to high levels of Glc, and have a near-wild-type germination response to abscisic acid and ethylene, indicating that GPA1 does not directly couple these signals in germination control. Seeds ectopically expressing GPA1 are at least a million-fold more responsive to GA, yet still require GA for germination. We conclude that the GPA1 indirectly operates on the GA pathway to control germination by potentiation. We propose that this potentiation is directly mediated by brassinosteroids (BR) because the BR response and synthesis mutants, bri1-5 and det2-1, respectively, share the same GA sensitivity as gpa1 seeds. Furthermore, gpa1 seeds are completely insensitive to brassinolide rescue of germination when the level of GA in seeds is reduced. A lack of BR responsiveness is also apparent in gpa1 roots and hypocotyls suggesting that BR signal transduction is likely coupled by a heterotrimeric G protein at various points in plant development.  相似文献   

13.
The effects of root application of brassinolide (BL) on the growth and development of Arabidopsis plants ( Arabidopsis thaliana ecotype Columbia [L.] Heynh) were evaluated. Initially, all leaves were evaluated on plants 18, 22, 26 and 29 days old. The younger leaves were found to exhibit maximal petiole elongation and upward leaf bending in response to BL treatment. Therefore, based on these results leaves 6, 7 and 8 on 22–24-day-old plants were selected for all subsequent studies. Elongation along the length of the petiole in response to BL treatment was uniform with the exception of an approximately 4 mm region next to the leaf where upward curvature was observed. Both BL and 24-epibrassinolide (24-epiBL) were evaluated, with BL being more effective at lower concentrations than 24-epiBL. The exaggerated growth induced by 0.1 μ M BL was not observed in plants treated with 1 000-fold higher concentrations of GA3, IAA, NAA or 2,4-D (100 μ M ). In addition, no exaggerated growth effects were observed when plants were treated with 200 ppm ethylene or 1 m M ACC. All treatments with BL, NAA, 2,4-D, IAA or ACC promoted ethylene and ACC production in wild type Arabidopsis plants, but only BL triggered exaggerated plant growth. BL also promoted exaggerated growth and elevated levels of ACC and ethylene in the ethylene insensitive mutant etr1-3 , showing that the effect of BR on growth is independent of ethylene. This work provides evidence that BR-induced exaggerated growth of Arabidopsis plants is independent of gibberellins, auxins and ethylene.  相似文献   

14.
Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3beta family. Unlike human glycogen synthase kinase 3beta, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways.  相似文献   

15.
Brassinosteroid (BR), an endogenous steroid growth regulator of higher plants, enhances expansion and division of the cell in a number of plant species. It has been recently reported that a shared auxin–BR signalling pathway is involved in the seedling growth in Arabidopsis . Here, we show that BR specifically enhanced the expression of AtACS4 , which encodes an auxin-responsive ACC synthase 4, by a distinct temporal induction mechanism compared with that of IAA in etiolated Arabidopsis seedlings. This BR induction of AtACS4 was undetectable in the light-grown seedlings. In addition, BR failed to activate the AtACS4 gene in auxin-resistant1 ( axr1-3 ) and auxin-resistant2 ( axr2-1 ), both of which are auxin-resistant mutants. Thus, it appears that there is a possible regulatory link between light, auxin and BR to control ethylene synthesis in Arabidopsis young seedlings. Analysis of transgenic Arabidopsis plants harbouring AtACS4::GUS fusion revealed the AtACS4 promoter-driven GUS activity in the highly elongating zone of the hypocotyls in response to BR treatment. Furthermore, Arabidopsis plants homozygous for the T-DNA insertion in the AtACS4 gene exhibited longer hypocotyls and roots than those of control seedlings. Taken together, these results suggest that the BR-induced ethylene production may participate in the elongation growth response in early seedling development of Arabidopsis .  相似文献   

16.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

17.
18.
Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development.  相似文献   

19.
The dumpy (dpy) mutant of tomato (Lycopersicon esculentum Mill.) exhibits short stature, reduced axillary branching, and altered leaf morphology. Application of brassinolide and castasterone rescued the dpy phenotype, as did C-23-hydroxylated, 6-deoxo intermediates of brassinolide biosynthesis. The brassinolide precursors campesterol, campestanol, and 6-deoxocathasterone failed to rescue, suggesting that dpy may be affected in the conversion of 6-deoxocathasterone to 6-deoxoteasterone, similar to the Arabidopsis constitutive photomorphogenesis and dwarfism (cpd) mutant. Measurements of endogenous brassinosteroid levels by gas chromatography-mass spectrometry were consistent with this hypothesis. To examine brassinosteroid-regulated gene expression in dpy, we performed cDNA subtractive hybridization and isolated a novel xyloglucan endotransglycosylase that is regulated by brassinosteroid treatment. The curl-3 (cu-3) mutant (Lycopersicon pimpinellifolium ?Jusl. Mill.) shows extreme dwarfism, altered leaf morphology, de-etiolation, and reduced fertility, all strikingly similar to the Arabidopsis mutant brassinosteroid insensitive 1 (bri1). Primary root elongation of wild-type L. pimpinellifolium seedlings was strongly inhibited by brassinosteroid application, while cu-3 mutant roots were able to elongate at the same brassinosteroid concentration. Moreover, cu-3 mutants retained sensitivity to indole-3-acetic acid, cytokinins, gibberellin, and abscisic acid while showing hypersensitivity to 2, 4-dichlorophenoxyacetic acid in the root elongation assay. The cu-3 root response to hormones, coupled with its bri1-like phenotype, suggests that cu-3 may also be brassinosteroid insensitive.  相似文献   

20.
The first brassinosteroid biosynthesis inhibitor is reported. Among newly synthesized triazole derivatives, 4-(4-chlorophenyl)-2-phenyl-3-(1,2,4-triazoyl)butan-2-ol (6) was found to inhibit the growth of cress seedlings, and this inhibition was recovered by the treatment of brassinolide, suggesting that compound 6 primarily inhibits brassinosteroid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号