首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   

2.
3.
4.
Genome-wide change of DNA methylation in preimplantation embryos is known to be important for the nuclear reprogramming process. A synthetic RNA encoding enhanced green fluorescence protein fused to the methyl-CpG-binding domain and nuclear localization signal of human MBD1 was microinjected into metaphase II-arrested or fertilized oocytes, and the localization of methylated DNA was monitored by live cell imaging. Both the central part of decondensing sperm nucleus and the rim region of the nucleolus in the male pronucleus were highly DNA-methylated during pronuclear formation. The methylated paternal genome undergoing active DNA demethylation in the enlarging pronucleus was dispersed, assembled, and then migrated to the nucleolar rim. The female pronucleus contained methylated DNA predominantly in the nucleoplasm. When the localization of methylated DNA in preimplantation embryos was examined, a configurational change of methylated chromatin dramatically occurred during the transition of 2-cell to 4-cell embryos. Moreover, retrospective analysis demonstrated that a noticeable number of the oocytes reconstructed by round spermatid injection (ROSI) possess small, bright dots of methylated chromatin in the nucleoplasm of male pronucleus. These ROSI oocytes showed a significantly low rate of 2-cell formation, thus suggesting that the poor embryonic development of the ROSI oocytes may result from the abnormal localization of methylated chromatin.  相似文献   

5.
Genome-wide changes of DNA methylation by active and passive demethylation processes are typical features during preimplantation development. Here we provide an insight that epigenetic reprogramming of DNA methylation is regulated in a region-specific manner, not a genome-wide fashion. To address this hypothesis, methylation states of three repetitive genomic regions were monitored at various developmental stages in the mouse embryos. Active demethylation was not observed in the IAP sequences whereas methylation reprogramming of the satellite sequences was regulated only by the active mechanism. Etn elements were actively demethylated after fertilization, passively demethylated by the 8-cell stage, and de novo methylated at the morular and blastocyst stages, showing dynamic epigenetic changes. Thus, our findings suggest that the specific genomic regions or sequences may spatially/temporally have their unique characteristics in the reprogramming of the DNA methylation during preimplantation development.  相似文献   

6.
7.
8.
DNA active demethylation is an important epigenetic phenomenon observed in porcine zygotes, yet its molecular origins are unknown. Our results show that 5-methylcytosine (5mC) converts into 5-hydroxymethylcytosine (5hmC) during the first cell cycle in porcine in vivo fertilization (IVV), IVF, and SCNT embryos, but not in parthenogenetically activated embryos. Expression of Ten-Eleven Translocation 1 (TET1) correlates with this conversion. Expression of 5mC gradually decreases until the morula stage; it is only expressed in the inner cell mass, but not trophectoderm regions of IVV and IVF blastocysts. Expression of 5mC in SCNT embryos is ectopically distinct from that observed in IVV and IVF embryos. In addition, 5hmC expression was similar to that of 5mC in IVV cleavage-stage embryos. Expression of 5hmC remained constant in IVF and SCNT embryos, and was evenly distributed among the inner cell mass and trophectoderm regions derived from IVV, IVF, and SCNT blastocysts. Ten-Eleven Translocation 3 was highly expressed in two-cell embryos, whereas TET1 and TET2 were highly expressed in blastocysts. These data suggest that TET1-catalyzed 5hmC may be involved in active DNA demethylation in porcine early embryos. In addition, 5mC, but not 5hmC, participates in the initial cell lineage specification in porcine IVV and IVF blastocysts. Last, SCNT embryos show aberrant 5mC and 5hmC expression during early porcine embryonic development.  相似文献   

9.
10.
11.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

12.
Active demethylation of cytosine residues in the sperm genome before forming a functional zygotic nucleus is thought to be an important function of the oocyte cytoplasm for subsequent embryonic development in the mouse. Conversely, this event does not occur in the sheep or rabbit zygote and occurs only partially in the cow. The aim of this study was to investigate the effect of limited methylation reprogramming in the normal sheep embryo on reprogramming somatic nuclei. Sheep fibroblast somatic nuclei were partially demethylated after electrofusion with recipient sheep oocytes and undergo a stepwise passive loss of DNA methylation during early development, as determined by 5-methylcytosine immunostaining on interphase embryonic nuclei. A similar decrease takes place with in vivo-derived sheep embryos up to the eight-cell stage, although nuclear transfer embryos exhibit a consistently higher level of methylation at each stage. Between the eight-cell and blastocyst stages, DNA methylation levels in nuclear transfer embryos are comparable with those derived in vivo, but the distribution of methylated DNA is abnormal in a high proportion. By correlating DNA methylation with developmental potential at individual stages, our results suggest that somatic nuclei that do not undergo rapid reorganization of their DNA before the first mitosis fail to develop within two to three cell cycles and that the observed methylation defects in early cleavage stages more likely occur as a direct consequence of failed nuclear reorganization than in failed demethylation capacity. However, because only embryos with reorganized chromatin appear to survive the 16-cell and morula stages, failure to demethylate the trophectoderm cells of the blastocyst is likely to directly impact on developmental potential by altering programmed patterns of gene expression in extra-embryonic tissues. Thus, both remodeling of DNA and epigenetic reprogramming appear critical for development of both fertilized and nuclear transfer embryos.  相似文献   

13.
Active demethylation of the paternal genome but not of the maternal genome occurs in fertilized mouse, rat, pig, and bovine zygotes. To study whether this early demethylation wave is important for embryonic development, we have analyzed the global methylation patterns of both in vivo-fertilized and cloned rabbit embryos. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized rabbit embryos revealed that the equally high methylation levels of the paternal and maternal genomes are largely maintained from the zygote up to the 16-cell stage. The lack of detectable methylation changes in rabbit preimplantation embryos suggests that genome-wide demethylation is not an obligatory requirement for epigenetic reprogramming. The methylation patterns of embryos derived from fibroblast and cumulus cell nuclear transfer were similar to those of in vivo-fertilized rabbit embryos. Fluorescence in situ hybridization with chromosome-specific BACs demonstrated significantly increased chromosomal aneuploidy rates in cumulus cell nuclear transfer rabbit embryos and embryos derived from nuclear transfer of rabbit fibroblasts into bovine oocytes compared with in vivo-fertilized rabbit embryos. The incidence of chromosomal abnormalities was correlated with subsequent developmental failure. We propose that postzygotic mitotic errors are one important explanation of why mammalian cloning often fails.  相似文献   

14.
15.
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.  相似文献   

16.
In an attempt to study gene regulation in very early stages of mouse embryogenesis, we injected genes constructed by joining the coding sequence of the bacterial β-galactosidase gene to four different animal gene enhancers/promoters and to poly (A) signals, and examined the gene expression in cleavage stage embryos.
With appropriate injection volumes for each embryonic stage, ranging from 0.2 to 1.3 pl, the majority of the injected embryos underwent at least one further cleavage. Expression of injected genes, which occurred transiently after injection, required the promoter sequences but without much distinction of the source of enhancer/promoter complexes. This result was in a sharp contrast to transfection of mouse cell lines where the recombinant genes were variably expressed reflecting differential enhancer effects.
By injection at the 1-cell stage, expression of injected genes was low while the expression by injection at the 2-cell or later stages was several fold higher, which may correlate with the fact that most zygotic gene expression begins after the 2-cell stage. The low expression at the 1-cell stage was augmented by the conditions causing clea***age arrest such as inhibition of DNA synthesis with aphidicolin.  相似文献   

17.
Oocyte vitrification has extensively been applied in the field of embryo engineering and in the preservation of genetic resources of fine livestock. Following our previous work in oocyte vitrification and the level change of DNA methylation, here we further explored the dynamic change of three active demethylation proteins: Ten-Eleven-Translocation 1/2/3(TET1/2/3), 5-methylcytosine (5 mC) and 5-hydroxymethycytosine (5hmC) after vitrification and warming. In order to observe the active demethylation in vitrified oocytes, two small molecular regulators, i.e. Vitamin C (VC) and dimethyloxaloylglycine (DMOG) were used to adjust activity and level of the TET 3 protein. The results showed that the levels of 5 mC and 5hmC were significantly decreased after 2 h of vitrification (P < 0.01). Moreover, the level of TET3 protein was significantly increased after 2 h warming (P < 0.01). And the relative gene expression of TET2/3 did not change in the first 2 h, but significantly increased after 2 h (P < 0.01). When VC was added to vitrification and recovery medium, it could not significantly improve the level of TET3 gene expression, and affect 5 mC and 5hmC expression (P > 0.05). When the DMOG was added to the solutions of vitrification, the level of 5hmC showed significantly increase (P < 0.01). In conclusion, the oocyte vitrification procedure reduced DNA methylation and hydroxymethylation in MII oocytes, but adding VC and DMOG to vitrification medium can prevent the reduction of DNA hydroxymethylation by increasing activity of TET3 methylation protein after vitrification and warming.  相似文献   

18.
Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5- hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.  相似文献   

19.
Bhutani N  Burns DM  Blau HM 《Cell》2011,146(6):866-872
The discovery of cytosine hydroxymethylation (5hmC) suggested a simple means of demethylating DNA and activating genes. Further experiments, however, unearthed an unexpectedly complex process, entailing both passive and active mechanisms of DNA demethylation by the ten-eleven translocation (TET) and AID/APOBEC families of enzymes. The consensus emerging from these studies is that removal of cytosine methylation in mammalian cells can occur by DNA repair. These reports highlight that in certain contexts, DNA methylation is not fixed but dynamic, requiring continuous regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号