共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrational assignments for the Fe-OH unit of ferric alkaline forms of two deletion derivatives of Rhizobium meliloti FixL, FixL*, a functional O2-sensing heme kinase, and FixLN, which contains only the heme domain, are made. Appearance of 2H- and 18O-sensitive Raman bands indicates that the heme group of FixL binds hydroxide as a distal ligand to form a six-coordinate
complex. The alkaline FixLs are distributed between high- and low-spin states. The high- and low-spin bands corresponding
to the ν (Fe-OH) modes occur at 479 and 539 cm–1, respectively. Low temperature favors formation of the low-spin complex, indicative of a thermal spin-state equilibrium.
The ν (Fe-OH) frequencies of FixLN and FixL* are 11 to 18 cm–1 lower than those observed for the respective vibrations in alkaline myoglobin and hemoglobin. The weaker Fe-OH bond in the
FixLs is attributed to a lack of hydrogen bonding on the distal side of the heme pocket.
Received: 20 November 1997 / Accepted: 2 March 1998 相似文献
2.
3.
Resonance Raman spectroscopy is employed to characterize heme site structural changes arising from conformational heterogeneity in deoxyMb and ligated derivatives, i.e., the ferrous CO (MbCO) and ferric cyanide (MbCN) complexes. The spectra for the reversed forms of these derivatives have been extracted from the spectra of reconstituted samples. Dramatic changes in the low-frequency spectra are observed, where newly observed RR modes of the reversed forms are assigned using protohemes that are selectively deuterated at the four methyl groups or at the four methine carbons. Interestingly, while substantial changes in the disposition of the peripheral vinyl and propionate groups can be inferred from the dramatic spectral shifts, the bonds to the internal histidyl imidazole ligand and those of the Fe-CO and Fe-CN fragments are not significantly affected by the heme rotation, as judged by lack of significant shifts in the nu(Fe-N(His)), nu(Fe-C), and nu(C-O) modes. In fact, the apparent lack of an effect on these key vibrational parameters of the Fe-N(His), Fe-CO, and Fe-CN fragments is entirely consistent with previously reported equilibrium and kinetic studies that document virtually identical functional properties for the native and reversed forms. 相似文献
4.
5.
6.
Chloroperoxidase from Caldariomyces fumago catalyzes the peroxidative chlorination of organic acceptor molecules. From a variety of spectroscopic data, it had long been thought that chloroperoxidase possessed an active site structure similar to that of cytochrome P-450cam. Resonance Raman studies conducted with isotopically substituted enzyme proved conclusively that the fifth axial ligand to the ferriprotoporphyrin IX moiety of chloroperoxidase is indeed a cysteine thiolate (Bangcharoenpaurpong, O., Champion, P. M., Hall, K. S., and Hager, L. P. (1986) Biochemistry 25, 2374-2378). In this study, Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid), was used to ascertain which of the 3 cysteine residues in the primary structure of chloroperoxidase serves as the fifth axial heme ligand; two of the cysteine residues were earlier shown to be involved in a disulfide linkage. Apoprotein was labeled under denaturing conditions with 5,5'-dithiobis(2-nitrobenzoic acid). A unique peptide, containing the thionitrobenzoate adduct, was isolated via reverse phase HPLC following digestion with endoproteinase Glu-C. Amino acid and Edman sequence analysis revealed the fifth axial ligand in chloroperoxidase to be cysteine 29. Under reducing and denaturing conditions, incubation of apochloroperoxidase with Ellman's reagent resulted in 3 labeled residues. Proteolysis and isolation of the labeled peptides using reverse phase HPLC and subsequent Edman sequence analysis detected and identified the thionitrobenzoate adducts of each of the three cysteinyl peptides of chloroperoxidase. 相似文献
7.
8.
Resonance Raman characterization of the heme prosthetic group in eosinophil peroxidase 总被引:2,自引:0,他引:2
The resonance-enhanced Raman spectrum of eosinophil peroxidase (EPO) from horse and human eosinophils is reported. Based upon the spectral energies, distribution and depolarization ratios of the high-frequency skeletal modes and upon the presence of weak bands assignable to vinyl substituent groups, we conclude that the heme prosthetic group is high-spin, 6 coordinate protoporphyrin. The Raman spectrum reveals clear differences from lactoperoxidase (LPO), an enzyme which appears nearly structurally isomorphous by other physical techniques; the data indicate a stronger axial 6th ligand in EPO. Mechanistic implications are discussed in relation to LPO and myeloperoxidase, an enzyme present in neutrophils and monocytes which contains a unique functional active-site chlorin. 相似文献
9.
The resonance Raman spectra of ferric derivatives of myeloperoxidase at pH 8 show ligand-dependent differences. The data are consistent with the resting enzyme and the chloride and fluoride derivatives all having 6-coordinated high-spin configurations. At pH 4 we find that the resting enzyme is susceptible to photodegradation from our low power incident laser beam. Chloride binding inhibits this denaturation. Our data support direct binding of chloride to the enzyme under physiological conditions. 相似文献
10.
W H Fuchsman C H Barlow W J Wallace W S Caughey 《Biochemical and biophysical research communications》1974,61(2):635-643
Solid dipyridine hemes which are unreactive toward oxygen lose both pyridine ligands upon heating under vacuum to give a solid which takes up O2, reversibly, one O2 per heme. Replacement of 16O2 by 18O2 reduces only infrared bands near 1660 and 1590 cm?1, frequencies near the vibrational band for gaseous O2. No FeO bands are detected. EPR spectra reveal a free radical and ferric iron; Mössbauer, NMR and infrared spectra support an iron(III) oxidation state. Limited molecular weight data indicate a dimer. Possibly two dioxygen molecules are held sandwich fashion between two porphyrins via donor-acceptor interactions, which are facilitated by electron transfer from iron(II) into the porphyrin forming a π-anion. Such O2 bonding is not found in oxy Hb and Mb or in oxyhemerythrin but may occur with cytochrome oxidase and other oxygen utilizing (or producing) heme and other proteins. 相似文献
11.
Satoh T Itoga A Isogai Y Kurihara M Yamada S Natori M Suzuki N Suruga K Kawachi R Arahira M Nishio T Fukazawa C Oku T 《FEBS letters》2002,531(3):543-547
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects. 相似文献
12.
Resonance Raman spectroscopic evidence for heme iron-hydroxide ligation in peroxidase alkaline forms
Horseradish peroxidase will convert from a five-coordinate high-spin heme at neutral pH to a six-coordinate low-spin heme at alkaline pH. Though alkaline forms of other heme proteins such as hemoglobin and myoglobin are known to contain a heme-ligated hydroxide, alkaline horseradish peroxidase has been considered not to contain a ligated hydroxide. Several alternatives have been proposed which would be stronger field ligands than a hydroxide ion. In this report we provide resonance Raman evidence, using Soret excitation, that alkaline horseradish peroxidase does in fact contain a heme iron-ligated hydroxyl group. The band was located for isoenzymes C and A-1 by its sensitivity to 18O substitution and confirmed with 54Fe, 57Fe, and 2H. An isoenzyme of turnip peroxidase was investigated and found to also contain a ligated hydroxide at alkaline pH. The observed peroxidase Fe(III)-OH frequencies are 15-25 cm-1 higher than the corresponding frequencies of alkaline methemoglobin and metmyoglobin and correlate with changes in spin-state distribution. This is explained in the context of hydrogen bonding to a distal histidine which results in increased ligand field strength facilitating the formation of low-spin hemes. It has been demonstrated that the ferryl/ferric redox potential of horseradish peroxidase is markedly lowered at alkaline pH (Hayashi, Y., and Yamazaki, I. (1979) J. Biol. Chem. 254, 9101-9106). These observations are rationalized in terms of oxidation of a ligated ferric hydroxyl group facilitated through base catalysis by a distal histidine. 相似文献
13.
The study of axial ligation by anionic ligands to ferric heme iron by resonance Raman spectroscopy provides a basis for comparison of the intrinsic electron donor ability of the proximal histidine in horse heart myoglobin (HHMb), dehaloperoxidase (DHP), and horseradish peroxidase (HRP). DHP is a dimeric hemoglobin (Hb) originally isolated from the terebellid polychaete Amphitrite ornata. The monomers are structurally related to Mb and yet DHP has a peroxidase function. The core size marker modes, v2 and v3, were observed using Soret excitation, and DHP-X was compared to HHMb-X for the ligand series X = F, Cl, Br, SCN, OH, N3, and CN. Special attention was paid to the hydroxide adduct, which is also formed during the catalytic cycle of peroxidases. The Fe-OH stretching frequency was observed and confirmed by deuteration and is higher in DHP than in HHMb. The population of high-spin states of the heme iron in DHP was determined to be intermediate between HHMb and HRP. The data provide the first direct measurement of the effect of axial ligation on the heme iron in DHP. The Raman data support a modified charge relay in DHP, in which a strongly hydrogen-bonded backbone carbonyl (>C=O) polarizes the proximal histidine. The charge relay mechanism by backbone carbonyl >C=O-His-Fe is the analogue of the Asp-His-Fe of peroxidases and Glu-His-Fe of flavohemoglobins. 相似文献
14.
15.
We present a systematic investigation of how the axial ligand in heme proteins influences the geometry, electronic structure, and spin states of the active site, and the energies of the reaction cycles. Using the density functional B3LYP method and medium-sized basis sets, we have compared models with His, His+Asp, Cys, Tyr, and Tyr+Arg as found in myoglobin and hemoglobin, peroxidases, cytochrome P450, and heme catalases, respectively. We have studied 12 reactants and intermediates of the reaction cycles of these enzymes, including complexes with H(2)O, OH(-), O(2-), CH(3)OH, O(2), H(2)O(2), and HO(2)(-) in various formal oxidation states of the iron ion (II to V). The results show that His gives ~0.6 V higher reduction potentials than the other ligands. In particular, it is harder to reduce and protonate the O(2) complex with His than with the other ligands, in accordance with the O(2) carrier function of globins and the oxidative chemistry of the other proteins. For most properties, the trend Cys相似文献
16.
Lou BS Snyder JK Marshall P Wang JS Wu G Kulmacz RJ Tsai AL Wang J 《Biochemistry》2000,39(40):12424-12434
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur. 相似文献
17.
Chu GC Katakura K Tomita T Zhang X Sun D Sato M Sasahara M Kayama T Ikeda-Saito M Yoshida T 《The Journal of biological chemistry》2000,275(23):17494-17500
The hemin complex of Hmu O, a 24-kDa soluble heme degradation enzyme in Corynebacterium diphtheriae, is coordinated axially to a neutral imidazole of a proximal histidine residue in Hmu O. To identify which of the eight histidines in Hmu O is the proximal heme ligand, we have constructed and expressed the plasmids for eight His --> Ala Hmu O mutants. Reconstituted with hemin, the active site structures and enzymatic activity of these mutants have been examined by EPR, resonance Raman, and optical absorption spectroscopy. EPR of the NO-bound ferrous heme-Hmu O mutant complexes reveals His(20) as the proximal heme ligand in Hmu O, and this is confirmed by resonance Raman results from the ligand-free ferrous heme-H20A. All eight His --> Ala mutants bind hemin stoichiometrically, proving that none of the histidines is essential for hemin-Hmu O formation. However, His(20) is crucial to Hmu O catalysis. Its absence by point mutation has inhibited the conversion of hemin to biliverdin. The ferric heme-H20A complex is pentacoordinate. Resonance Raman of the CO-bound ferrous heme-H20A corroborates this and reveals an Fe-C-O bending mode, delta(Fe-C-O), the first reported for a pentacoordinate CO-bound hemeprotein. The appearance of delta(Fe-C-O) in C. diphtheriae Hmu O H20A but not mammalian HO-1 mutant H25A indicates that the heme environment between the two heme oxygenases is different. 相似文献
18.
A separate and distinct population of polyribosomes exists in the detergent-washed nuclei of adenovirus-infected HeLa cells. These polyribosomes, released by exposure to polynucleotides such as high molecular weight nuclear RNA or poly(U), do not appear to be cytoplasmic contaminants. Nuclear polyribosomes have a considerably lower buoyant density compared to cytoplasmic ones. Nuclear polyribosomes, in a cell-free system of protein synthesis, are six- to eight-fold less active compared to cytoplasmic ones and are insensitive to aurin tricarboxylic acid. They do not complement cytoplasmic polyribosomes in protein synthesis in the cell-free system. Finally, the number of proteins synthesized by nuclear polyribosomes is higher compared with that synthesized by the cytoplasmic ones. Only the virus-specific proteins, including P-VII, are synthesized by cytoplasmic polyribosomes. Nuclear polyribosomes, on the other hand, synthesize virusspecific proteins, including P-VII and VII, and a number of additional proteins not synthesized by the cytoplasmic ones. 相似文献
19.
Recent progress in generating and stabilizing reactive heme protein enzymatic intermediates by cryoradiolytic reduction has prompted application of a range of spectroscopic approaches to effectively interrogate these species. The impressive potential of resonance Raman spectroscopy for characterizing such samples has been recently demonstrated in a number of studies of peroxo- and hydroperoxo-intermediates. While it is anticipated that this approach can be productively applied to the wide range of heme proteins whose reaction cycles naturally involve these peroxo- and hydroperoxo-intermediates, one limitation that sometimes arises is the lack of enhancement of the key intraligand ν(O-O) stretching mode in the native systems. The present work was undertaken to explore the utility of cobalt substitution to enhance both the ν(Co-O) and ν(O-O) modes of the CoOOH fragments of hydroperoxo forms of heme proteins bearing a trans-axial histidine linkage. Thus, having recently completed RR studies of hydroperoxo myoglobin, attention is now turned to its cobalt-substituted analogue. Spectra are acquired for samples prepared with 16O2 and 18O2 to reveal the ν(M-O) and ν(O-O) modes, the latter indeed being observed only for the cobalt-substituted proteins. In addition, spectra of samples prepared in deuterated solvents were also acquired, providing definitive evidence for the presence of the hydroperoxo-species. 相似文献
20.
UV Resonance Raman explores protein structural modification upon fibrillation and ligand interaction
《Biophysical journal》2021,120(20):4575-4589
Amyloids are proteinaceous deposits considered an underlying pathological hallmark of several degenerative diseases. The mechanism of amyloid formation and its inhibition still represent challenging issues, especially when protein structure cannot be investigated by classical biophysical techniques as for the intrinsically disordered proteins (IDPs). In this view, the need to find an alternative way for providing molecular and structural information regarding IDPs prompted us to set a novel, to our knowledge, approach focused on UV Resonance Raman (UVRR) spectroscopy. To test its applicability, we study the fibrillation of hen-egg white lysozyme (HEWL) and insulin as well as their interaction with resveratrol, employing also intrinsic fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The increasing of the β-sheet structure content at the end of protein fibrillation probed by FTIR occurs simultaneously with a major solvent exposure of tryptophan (Trp) and tyrosine (Tyr) residues of HEWL and insulin, respectively, as revealed by UVRR and intrinsic fluorescence spectroscopy. However, because the latter technique is successfully used when proteins naturally contain Trp residues, it shows poor performances in the case of insulin, and the information regarding its tertiary structure is exclusively provided by UVRR spectroscopy. The presence of an increased concentration of resveratrol induces mild changes in the secondary structure of both protein fibrils while remodeling HEWL fibril length and promoting the formation of amorphous aggregates in the case of insulin. Although the intrinsic fluorescence spectra of proteins are hidden by resveratrol signal, UVRR Trp and Tyr bands are resonantly enhanced, showing a good sensitivity to the presence of resveratrol and marking a modification in the noncovalent interactions in which they are involved. Our findings demonstrate that UVRR is successfully employed in the study of aggregation-prone proteins and of their interaction with ligands, especially in the case of Trp-lacking proteins. 相似文献