首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of several GTP-binding regulatory proteins in teh apical membrane of intestinal epithelial cells has prompted us to investigate a possible role for G-proteins as modulators of apical Cl- channels. In membrane vesicles isolated from rat small intestine or human HT29-cl.19A colon carcinoma cells, the entrapment of guanosine 5'-O-(3-thiophosphate (GTP gamma S) led to a large increase in Cl- conductance, as evidenced by an increased 125I- uptake and faster SPQ quenching. The enhancement was observed in the presence, but not in the absence of the K+ ionophore valinomycin, indicating that the increased Cl- permeability is not secondary to the opening of K+ channels. The effect of GTP gamma S was counteracted by guanosine 5'-O-(2-thiophosphate (GDP beta S) and appeared to be independent of cytosolic messengers, including ATP, cAMP, and Ca2+, suggesting that protein phosphorylation and/or phospholipase C activation is not involved. Patch clamp analysis of apical membrane patches of HT29-cl.19A colonocytes revealed a GTP gamma S-activated, inwardly rectifying, anion-selective channel with a unitary conductance of 20 +/- 4 pS. No spontaneous channel openings were observed in the absence of GTP gamma S, while the open time probability (Po) increases dramatically to 0.81 +/- 0.09 upon addition with GTP gamma S. Since the electrophysiological characteristics and regulatory properties of this channel are markedly different from those of the more widely studied cAMP/protein kinase A-operated channel, we propose the existence of a separate Cl(-)-selective ion channel in the apical border of intestinal epithelial cells. Our results suggest an alternative regulatory pathway in transepithelial salt transport and a possible site for anomalous channel regulation as observed in cystic fibrosis patients.  相似文献   

2.
Somatostatin (SS) inhibits secretion from many cells, including clonal GH3 pituitary cells, by a complex mechanism that involves a pertussis toxin (PTX)-sensitive step and is not limited to its cAMP lowering effect, since secretion induced by cAMP analogs and K+ depolarization are also inhibited. SS also causes membrane hyperpolarization which may lead to decreases in intracellular Ca2+ need for secretion. Using patch clamp techniques we now demonstrate: 1) that both (SS) and acetylcholine applied through the patch pipette to the extracellular face of a patch activate a 55-picosiemens K+ channel without using a soluble second messenger; 2) that, after patch excision, the active state of the ligand-stimulated channel is dependent on GTP in the bath, is abolished by treatment of the cytoplasmic face of the patch with activated PTX and NAD+, and after inactivation by PTX, is restored in a GTP-dependent manner by addition of a nonactivated human erythrocyte PTX-sensitive G protein, and 3) that the 55-picosiemens K+ channel can also be activated in a ligand-independent manner with guanosine [gamma-thio] triphosphate (GTP gamma S) or with Mg2+/GTP gamma S-activated erythrocyte G protein. We call this protein GK. It is an alpha-beta-gamma trimer of which we have previously shown that the alpha-subunit is the substrate for PTX and that it dissociates on activation with Mg2+/GTP gamma S into alpha-GTP gamma S plus beta-gamma. A similarly activated and dissociated preparation of GS, the stimulatory regulatory component of adenylyl cyclase, having a different alpha-subunit but the same beta-gamma-dimer, was unable to cause K+ opening.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Nucleoside triphosphates are required to open the CFTR chloride channel.   总被引:39,自引:0,他引:39  
The CFTR Cl- channel contains two predicted nucleotide-binding domains (NBD1 and NBD2); therefore, we examined the effect of ATP on channel activity. Once phosphorylated by cAMP-dependent protein kinase (PKA), channels required cytosolic ATP to open. Activation occurred by a PKA-independent mechanism. ATP gamma S substituted for ATP in PKA phosphorylation, but it did not open the channel. Several hydrolyzable nucleotides (ATP greater than GTP greater than ITP approximately UTP greater than CTP) reversibly activated phosphorylated channels, but nonhydrolyzable analogs and Mg(2+)-free ATP did not. Studies of CFTR mutants indicated that ATP controls channel activity independent of the R domain and suggested that hydrolysis of ATP by NBD1 may be sufficient for channel opening. The finding that nucleoside triphosphates regulate CFTR begins to explain why CF-associated mutations in the NBDs block Cl- channel function.  相似文献   

4.
The response of plant cells to invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Ca2+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Guanosine 5[prime]-[[beta]-thio]diphosphate, a GDP analog that locks heterotrimeric G-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5[prime][[gamma]-thio]triphosphate, a nonhydrolyzable GTP analog that locks heterotrimeric G-proteins into their activated state, produced an effect similar to that observed with the fungal elicitor. Mastoparan, which stimulates GTPase activity, mimicked the effect of GTP[[gamma]]S. The addition of HA1004 (a protein kinase inhibitor) in the presence of the elicitor totally abolished channel activity, whereas okadaic acid (a protein phosphatase inhibitor) moderately enhanced channel activity, suggesting that the activation of the channel by fungal elicitors is modulated by a heterotrimeric G-protein-dependent phosphorylation of the channel protein.  相似文献   

5.
The regulation of calcium-activated K (KCa) channels by a G protein-mediated mechanism was studied. KCa channels were reconstituted in planar lipid bilayers by fusion of membrane vesicles from rat or pig myometrium. The regulatory process was studied by exploring the actions of GTP and GTP gamma S on single channel activity. KCa channels had a conductance of 260 +/- 6 pS (n = 25, +/- SE, 250/50 mM KCl gradient) and were voltage dependent. The open probability (Po) vs. voltage relationships were well fit by a Boltzmann distribution. The slope factor (11 mV) was insensitive to internal Ca2+. The half activation potential (V1/2) was shifted -70 mV by raising internal Ca2+ from pCa 6.2 to pCa 4. Addition of GTP or GTP gamma S activated channel activity only in the presence of Mg2+, a characteristic typical of G protein-mediated mechanisms. The Po increased from 0.18 +/- 0.08 to 0.49 +/- 0.07 (n = 7, 0 mV, pCa 6 to 6.8). The channel was also activated (Po increased from 0.03 to 0.37) in the presence of AMP-PNP, a nonphosphorylating ATP analogue, suggesting a direct G protein gating of KCa channels. Upon nucleotide activation, mean open time increased by a factor of 2.7 +/- 0.7 and mean closed time decreased by 0.2 +/- 0.07 of their initial values (n = 6). Norepinephrine (NE) or isoproterenol potentiated the GTP-mediated activation of KCa channels (Po increased from 0.17 +/- 0.06 to 0.35 +/- 0.07, n = 10). These results suggest that myometrium possesses beta-adrenergic receptors coupled to a GTP-dependent protein that can directly gate KCa channels. Furthermore, KCa channels, beta-adrenergic receptors, and G proteins can be reconstituted in lipid bilayers as a stable, functionally coupled, molecular complex.  相似文献   

6.
Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was insensitive to propranolol or ACh, but could still be abolished by pipette application of PKI. The data indicate that stimulation of beta-adrenergic or histaminergic receptors in the presence of nonhydrolyzable GTP analogues causes persistent activation of Gs and uncouples it from the receptors. We conclude that autonomic regulation of cardiac Cl- conductance reflects accurately the underlying modulation of adenylyl cyclase activity and, hence, that this system is a suitable mammalian model for in situ studies of the interactions between adenylyl cyclase, Gs, Gi, and forskolin.  相似文献   

7.
In phagocytes, activation of the respiratory burst by chemoattractants requires ATP and involves a pertussis toxin-sensitive G protein. ATP is also required for the response elicited in permeabilized neutrophils by nonhydrolyzable GTP analogs, indicating that at least one of the ATP-dependent steps lies downstream of the receptor-coupled G protein(s). A respiratory burst can also be produced in a reconstituted cell-free system by addition of arachidonic acid. Most investigators find this response to be independent of ATP, yet stimulated by GTP analogs, implying that the ATP-dependent steps observed in the unbroken cells must precede the guanine nucleotide-requiring event. To resolve this apparent discrepancy, we studied the ATP and guanine nucleotide dependence of the oxidative response elicited by arachidonic acid in electrically permeabilized human neutrophils. Two components of the response were apparent: one was ATP-dependent, the other ATP-independent. The ATP-dependent component was partially inhibited by staurosporine, suggesting involvement of protein kinase C. This kinase signals activation of the NADPH oxidase without intervening G proteins, since stimulation by phorbol ester was unaffected by guanosine 5'-(beta-thio)diphosphate (GDP beta S). Although nonhydrolyzable GTP analogs failed to stimulate the oxidase in the absence of ATP, the ATP-independent response stimulated by arachidonic acid was found to require GTP or one of its analogs and to be inhibited by GDP beta S. The relative potency of the guanine nucleotides to support the arachidonic acid response in the absence of ATP (5'-guanylyl imidodiphosphate (GMP-PNP) greater than or equal to guanosine 5'-(gamma-thio)triphosphate GTP gamma S) greater than or equal to (GTP) differed from their efficacy to stimulate the burst in the presence of ATP (GTP gamma S greater than GMP-PNP much greater than GTP). These observations suggest the involvement of two distinct GTP-binding proteins in oxidase activation: a receptor-coupled, heterotrimeric, pertussis toxin-sensitive G protein, and a second GTP-binding protein(s) located downstream of the ATP-requiring steps, which may lie in close proximity to the NADPH oxidase. This secondary GTP-binding protein could be part of the pathway activated by chemoattractants, but does not mediate stimulation via protein kinase C. Therefore multiple parallel routes may exist for activation of the NADPH oxidase.  相似文献   

8.
Release of P-choline and choline from purified rat plasma membrane preparations was increased by GTP and its less hydrolyzable analogues, whereas other nucleotide triphosphates had little or no effect. Stimulation by guanosine 5'-(3-O-thiol)triphosphate (GTP gamma S) was dependent upon magnesium, inhibited by guanosine 5'-(2-O-thiol)diphosphate, and independent of calcium. ATP and ADP (1-100 microM) markedly enhanced the GTP gamma S stimulation of P-choline plus choline release but had no effect alone. ADP was as effective as ATP and nonhydrolyzable ATP analogues produced a similar or greater stimulation, whereas AMP and adenosine were much less effective. Vasopressin (0.1 microM) also produced a small stimulation. Under conditions in which protein kinase C was activated, PMA also stimulated the response to GTP gamma S but was ineffective in its absence. P-choline was the initial product which was hydrolyzed to choline. Guanine nucleotide and purinergic effects were also apparent on phosphatidylcholine degradation. EGTA, at 0.5 mM, completely removed purinergic stimulation but did not affect P-choline plus choline released in response to GTP gamma S alone. Prior treatment of plasma membranes with cholera toxin or prior injection of animals with islet-activating protein did not affect the stimulation of P-choline plus choline release either by GTP gamma S alone or by GTP gamma S plus ATP. These results indicate that a phosphatidylcholine phospholipase C is coupled to purinergic receptors in rat liver plasma membranes by a GTP-binding protein. Hydrolysis of phosphatidylcholine could contribute to hepatic diacylglycerol levels and thus influence protein kinase C activity.  相似文献   

9.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- >> SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10- fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

10.
Purified G-protein (transducin) activated with the nonhydrolyzable analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and cGMP phosphodiesterase (PDE) from retinal rods are added to protein-stripped disc membranes. Specific binding of the mainly soluble alpha subunit of G-protein with GTP gamma S bound (G alpha GTP gamma S, activator of the PDE) to the disc membrane in the presence of PDE is measured from gel scans or experiments with labeled G-protein alpha subunit (G alpha). Its variation as a function of G concentration matches the theoretical variation of G alpha involved in the activation of PDE calculated with previously estimated dissociation constants (Bennett, N., and Clerc, A. (1989) Biochemistry 28, 7418-7424), and the G alpha bound/PDE ratio at saturation is close to 2. No increase of G alpha binding to the membrane is observed when purified inhibitory subunit of PDE (PDE gamma) is added together with or instead of total PDE, and excess PDE gamma remains soluble. These results suggest that activated PDE is a complex with the activator G alpha GTP rather than PDE from which the inhibitory subunits have been removed. A method for purifying PDE gamma with a high yield of recovery and activity is described.  相似文献   

11.
We demonstrated recently that purified preparations of Gs, the stimulatory G protein of adenylyl cyclase, can stabilize Ca2+ channels in inside-out cardiac ventricle membrane patches stimulated prior to excision by the beta-adrenergic agonist isoprenaline or by the dihydropyridine agonist Bay K 8644 and that such preparations of Gs can restore activity to spontaneously inactivated cardiac Ca2+ channels incorporated into planar lipid bilayers (Yatani, A., Codina, J., Reeves, J.P., Birnbaumer, L., and Brown, A.M. (1987) Science 238, 1288-1292). To test whether these effects represented true stimulation and to further identify the G protein responsible, we incorporated skeletal muscle T-tubule membranes into lipid bilayers and studied the response of their Ca2+ channels to G proteins, specifically Gs, and manipulations known to be specific for Gs. In contrast to cardiac channels, incorporated T-tubule Ca2+ channels exhibit stable average activities over prolonged periods of time (up to 20 min at room temperature), allowing assessment of possible effects of G proteins under steady-state assay conditions. We report that exogenously added human erythrocyte GTP gamma S (guanosine 5'-O-(3-thiotriphosphate]-activated Gs (Gs) or its resolved GTP gamma S-activated alpha subunit (alpha s) stimulate T-tubule Ca2+ channels by factors of 2-3 in the presence of Bay K 8644, and of 10-20 in the absence of Bay K 8644 and that they do so in a manner that is independent of concurrent or previous phosphorylation by cAMP-dependent protein kinase. Activation of purified Gs by cholera toxin increases both its adenylyl cyclase stimulatory and its Ca2+ channel stimulatory effects. Ca2+ channels previously stimulated by the combined actions of Bay K 8644 and cAMP-dependent protein kinase still respond to Gs. We conclude that the responses seen are due to Gs rather than a contaminant, that the effect on Ca2+ channel activity is that of a true stimulation, akin to that on adenylyl cyclase, and show that a given G protein may regulate more than one effector system.  相似文献   

12.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

13.
Polarized renal epithelial cells have pertussis toxin-sensitive Gi proteins at their apical membrane capable of modulating Na+ channel activity (Cantiello, H.F., Patenaude, C.R., and Ausiello, D.A. (1989) J. Biol. Chem. 264, 20867-20870). In this study, the patch clamp technique was used to assess if this Gi-mediated regulation of Na+ channels is a component of a phospholipid signal transduction pathway. In excised inside-out patches of apical membranes of A6 cells, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated Na+ channel activity (percent open time and channel number) was inhibited by the phospholipase inhibitor mepacrine (50 microM), which had no effect on single channel conductance. In contrast, Na+ channel activity increased in a Ca2(+)-dependent manner following the addition of 100 nM mellitin to untreated or pertussis toxin-treated patches. Addition of 10 microM arachidonic acid in the presence of mepacrine increased Na+ channel activity. Both percent open time and Na+ channel number induced by GTP gamma S, the exogenous alpha i-3 subunit, or arachidonic acid were inhibited by the addition of the 5-lipoxygenase inhibitor nordihydroguaiaretic acid. Na+ channel activity was restored with the addition of leukotriene D4 (100 nM) or the parental leukotriene substrate 5-hydroperoxyeicosatetraenoic acid (10 microM). Thus, Gi activation of apical membrane epithelial Na+ channels is mediated through the regulation of phospholipase and lipoxygenase activities. This apically located signal transduction pathway may be sensitive to, or independent of, classical second messengers generated at the basolateral membrane and known to be responsible for modulation of Na+ channel activity in epithelia.  相似文献   

14.
Neutrophil NADPH:O2 oxidoreductase activity, essential in the killing of bacteria by neutrophils, can be elicited in a cell-free system that requires plasma membranes, cytosol and sodium dodecyl sulfate. In addition, GTP or its nonhydrolyzable analog guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) enhances NADPH oxidase activity. We investigated the mechanism of this effect of GTP gamma S in the cell-free system. Cytosol from human neutrophils was separated in three different soluble oxidase components (SOC I, SOC II, and SOC III). Previously we (Bolscher, B. G. J. M., Van Zwieten, R., Kramer, I. J. M., Weening, R. S., Verhoeven, A. J., and Roos, D. (1989) J. Clin. Invest. 83, 757-763) reported that the cytosol contains two components which act synergistically. We now report that one component (previously labeled SOC II) contains two different components that can be separated by ion exchange chromatography. Immunoblotting with antiserum B-1 (Volpp, B. D., Nauseef, W. M., and Clark, R. A. (1988) Science 242, 1295-1297), directed against a cytosolic complex capable of activating latent membranes in the cell-free system, showed a 47-kDa protein in SOC II and a 67-kDa protein in SOC III. SOC II also contains the 47-kDa phosphoprotein, which indicates that this phosphoprotein and the protein recognized by the antiserum are identical. Low rates of NADPH-dependent O2 consumption can be elicited by SOC II and SOC III in the absence of SOC I. This activity is independent of GTP gamma S. Addition of SOC I increases this activity 3-4-fold, only when GTP gamma S is present. Plasma membranes, incubated with SOC I plus GTP gamma S and re-isolated, showed a similar 3-4-fold enhanced O2 consumption with SOC II and SOC III. The GTP gamma S effect is exerted primarily at the level of the plasma membrane. The concentration of GTP gamma S that causes a half-maximal stimulation was 0.4 mu M. It is concluded that SOC I is a functional component of the NADPH oxidase.  相似文献   

15.
Characterization of the mechanism of endocytic vesicle fusion in vitro   总被引:8,自引:0,他引:8  
A cell-free assay to monitor receptor-mediated endocytic processes has been developed that uses biotinylated transferrin and avidin-linked beta-galactosidase as receptor-associated and fluid-phase probes, respectively (Wessling-Resnick, M., and Braell, W. A. (1990) J. Biol. Chem. 265, 690-699). The fusion of vesicles from heterologous sources can be detected in this assay: endocytic vesicles from K562 cells (a human cell line) will fuse with vesicles from Chinese hamster ovary cells. Fusion between endocytic vesicles is inhibited upon treatment with N-ethylmaleimide but can be restored by the addition of untreated cytosol from either cell type. The in vitro fusion reaction is also inhibited by the nonhydrolyzable nucleotide analogs guanosine 5'-(3-thiotriphosphate) (GTP gamma S) and adenosine 5'-(3-thiotriphosphate) (ATP gamma S). Other nonhydrolyzable guanine nucleotides are found to inhibit the in vitro reaction in the following order of potency: GTP gamma S greater than 5'-guanylyl imidodiphosphate (GTP-PNP) greater than alpha,beta-methylene GTP (GTP-PCP). The inhibitory effects of the nonhydrolyzable analogs of GTP and ATP are not additive. Moreover, excess GTP relieves the inhibition by GTP gamma S more than it relieves the inhibition by ATP gamma S, while excess ATP preferentially alleviates ATP gamma S (not GTP gamma S) inhibition. These properties suggest that the two nucleotides exert their effects at distinct points in the fusion process. Although micromolar levels of excess Ca2+ also inhibit vesicle fusion, the inhibition exerted by GTP gamma S appears to proceed via a pathway independent of the divalent cation. The GTP gamma S-sensitive step in endocytic vesicle fusion is found to occur at a mechanistic stage prior to and distinct from the N-ethylmaleimide-sensitive step of the reaction. This situation permits the accumulation of a membrane vesicle intermediate in the presence of GTP gamma S; subsequent incubation of these vesicles with cytosol and GTP restores their fusion competence. Characteristics of in vitro endocytic vesicle fusion suggest that similarities exist with steps of the fusion mechanism involved with membrane traffic events of the secretory pathway.  相似文献   

16.
In freshly dispersed guinea pig taenia coli myocytes the activity of the large conductance Ca(2+)-activated K+ channel (maxi-K+ channel) predominates. The open probability (Po) of this channel is increased by micromolar concentrations of the beta-adrenergic agonist isoproterenol (ISO). Low concentrations of cholera toxin (CTX, 1 pM) and guanosine 5'- O-2-thiodiphosphate (GDP beta S, 0.5 mM) suppress the ISO-induced increase of Po. Higher concentrations of CTX (e.g., 0.5 nM) as well as forskolin and dibutyryl cAMP increase the Po. 1,9-Dideoxyforskolin, the forskolin analogue, which lacks the adenylate cyclase-stimulating effect, does not. A specific protein kinase A inhibitor (Wiptide), applied intracellularly via diffusion from the patch electrode, suppresses the ISO-induced increase of whole-cell outward K+ current during step depolarization. In contrast, intracellularly applied protein kinase C (19-36), a specific protein kinase C inhibitor, has no effect on the whole-cell current. TMB-8, an inhibitor of intracellular calcium mobilization, does not affect either the whole-cell outward K+ current during step depolarization or the Po. These observations show that ISO increases the Po of the maxi-K+ channels in the guinea pig taenia coli myocytes through the G protein-adenylate cyclase-protein kinase A system.  相似文献   

17.
The effect of beta gamma-dimers isolated from the retinal guanine nucleotide-binding protein (G protein) transducin eluted from illuminated bovine rod outer segment membranes with GTP, guanosine 5'-O-(beta, gamma-imino)triphosphate (Gpp(NH)p), or guanosine 5'-O-(gamma-thio)triphosphate (GTP gamma S) on basal and forskolin-stimulated adenylylcyclase activities in membranes of human platelets was studied. beta gamma-Subunits isolated from transducin eluted with GTP gamma S (TD beta gamma GTP gamma S) had a concentration-dependent stimulatory effect on basal adenylylcyclase activity. The stimulatory agonist prostaglandin E1 increased the potency and the maximum extent of stimulation due to TD beta gamma GTP gamma S). With a similar concentration dependence, TD beta gamma GTP gamma S exerted an inhibitory influence on forskolin-stimulated adenylylcyclase activity. At the same concentrations, beta gamma-dimers isolated with either GTP or Gpp(NH)p did not alter enzyme activities. The observed effects of TD beta gamma GTP gamma S were similar to those of directly added GTP gamma S with regard to maximum levels, time dependence, and persistence; however, TD beta gamma GTP gamma S was approximately 10-fold more potent than GTP gamma S. Treatment of TD beta gamma GTP gamma S, but not of free GTP gamma S, with hydroxylamine caused a loss of adenylylcyclase regulation by TD beta gamma GTP gamma S. The data presented indicated that TD beta gamma GTP gamma S potently and efficiently activates the stimulatory and inhibitory G proteins of adenylylcyclase in human platelet membranes. Furthermore, evidence is provided suggesting that the observed effects of TD beta gamma GTP gamma S, which can be thiophosphorylated by GTP gamma S at the beta-subunit (Wieland, T., Ulibarri, I., Gierschik, P., and Jakobs, K. H. (1991) Eur. J. Biochem. 196, 707-716), are due to formation of GTP gamma S at the G proteins.  相似文献   

18.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

19.
Abnormal regulation of ion channels in cystic fibrosis epithelia.   总被引:9,自引:0,他引:9  
M J Welsh 《FASEB journal》1990,4(10):2718-2725
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by defective electrolyte transport in several epithelia. In sweat duct, pancreatic, intestinal, and airway epithelia, abnormalities in transepithelial ion transport may account for the manifestations of the disease. A Cl- impermeable apical cell membrane is a common feature in these CF epithelia. The rate of transepithelial Cl- transport is controlled in part by hormonally regulated apical membrane Cl- channels; in CF epithelia, Cl- channels are present but their regulation is defective. Most regulation studies have focused on an outwardly rectifying Cl- channel, although other channels may be involved in Cl- secretion. Phosphorylation of Cl- channels or associated regulatory proteins by cAMP-dependent protein kinase or by protein kinase C (at a low internal [Ca2+]) in excised patches of membrane activates Cl- channels in normal cells but not in CF cells. Phosphorylation with protein kinase C at a high internal [Ca2+] in excised patches of membrane inactivates the channel; such inactivation is normal in CF cells. Cl- channels can also be activated by other maneuvers including an increase in the cytosolic [Ca2+], sustained membrane depolarization, an increase in temperature, proteolysis, and changes in osmolarity; the response to such maneuvers is not defective in CF. In addition to the Cl- channel abnormalities, Na+ absorption is increased in CF epithelia. It is not certain whether the increased rate of Na+ absorption results from an increase in the number of cation channels or an alteration of their kinetics. The relation of these ion channel abnormalities to the CF gene product is unknown, but an understanding of the function of the protein product and its defective function in CF should yield important new insights into the pathogenesis and potential therapy of this disease.  相似文献   

20.
The NADPH-oxidase of human neutrophils can be activated in a cell-free system comprised of plasma membrane, cytosol, and an anionic amphiphile such as arachidonate or sodium dodecyl sulfate (SDS). Recently, we showed that diacylglycerol acts synergistically with SDS in the cell-free system to stimulate superoxide generation, with concurrent phosphorylation of a 47-kDa cytosolic protein which is thought to be a component of the oxidase (Burnham, D. N., Uhlinger, D. J., and Lambeth, J. D. (1990) J. Biol. Chem. 265, 17550-17559). We report herein that when undialyzed cytosol is used along with either SDS alone or SDS plus diacylglycerol as activators, adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) both stimulated superoxide generation several fold, yielding about the same maximal velocity. ATP and GTP showed lower levels of stimulation. Stimulation by ATP gamma S and GTP gamma S was nonadditive, and showed a 5-7-fold greater specificity for GTP gamma S. ATP gamma S stimulation was inhibited by the nucleoside diphosphate (NDP) kinase inhibitor UDP. In contrast, when extensively dialyzed cytosol was used, most of the stimulation by ATP gamma S was lost, while most of that by GTP gamma S was retained. Addition of GDP restored the ability of ATP gamma S to stimulate, consistent with NDP kinase-catalyzed formation of GTP gamma S from ATP gamma S plus GDP. This activity was demonstrated directly in both cytosol and plasma membrane. Using undialyzed cytosol, phosphorylation of p47 showed a similar nonspecificity for nucleoside triphosphates, due to NDP kinase activity, but revealed the expected ATP specificity when dialyzed cytosol was used. Neither ATP gamma S nor GTP gamma S were good substrates for protein phosphorylation. Under a variety of conditions, phosphorylation of p47 or other neutrophil proteins failed to correlate with oxidase activation. The present studies indicate that SDS and diacylglycerol stimulation of superoxide generation in the cell-free system is independent of protein kinase C or other protein kinase activity, and suggest a novel role for diacylglycerol in cell regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号