首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular location of calmodulin- and cyclic AMP stimulated protein kinases was assessed in synaptosomes which were prepared on Percoll density gradients. The distribution of the protein kinases between the outside and the inside and between the soluble and membrane fractions was determined by incubating intact and lysed synaptosomes, as well as supernatant and pellet fractions obtained from lysed synaptosomes, in the presence of [gamma-32P]ATP. Protein kinase activity was assessed by the labelling of endogenous proteins, or exogenous peptide substrates, under conditions optimized for either calmodulin- or cyclic AMP-stimulated protein phosphorylation. When assessed by calmodulin-stimulated autophosphorylation of the alpha subunit of calmodulin kinase II, 44% of this enzyme was on the outside of synaptosomes, and 41% was in the 100,000 g supernatant. Using an exogenous peptide substrate, the distribution of total calmodulin-stimulated kinase activity was 27% on the outside and 34% in the supernatant. The high proportion of calmodulin kinase II on the outside of synaptosomes is consistent with its known localization at postsynaptic densities. The proportion of calmodulin kinase II which was soluble depended on the ionic strength conditions used to prepare the supernatant, but the results suggest that a major proportion of this enzyme which is inside synaptosomes is soluble. When assessed by cyclic AMP-stimulated phosphorylation of endogenous substrates, no cyclic AMP-stimulated kinase activity was observed on the outside of synaptosomes, whereas 21% was found with an exogenous peptide substrate. This suggests that if endogenous substrates are present on the outside of synaptosomes, then the enzyme does not have access to them. The cyclic AMP-stimulated protein kinase present inside synaptosomes was largely bound to membranes and/or the cytoskeleton, with only 10% found in the supernatant when assessed by endogenous protein phosphorylation and 25% with an exogenous substrate. The markedly different distribution of the calmodulin- and cyclic AMP-stimulated protein kinases presumably reflects differences in the functions of these enzymes at synapses.  相似文献   

2.
The autophosphorylation of purified Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) on a threonine-containing phosphopeptide common to both the alpha and beta subunits was previously shown to convert this enzyme into a catalytically active Ca2+-independent species. We now have examined the phosphorylation and activation of Ca2+/CaM kinase II in synaptosomes, a Ca2+-dependent neurosecretory system consisting of isolated nerve terminals. Synaptosomes were prelabeled with 32Pi and the alpha subunit of Ca2+/CaM kinase II was immunoprecipitated. Under basal incubation conditions the alpha subunit was phosphorylated. Depolarization of synaptosomes produced a rapid (2-5 s) Ca2+-dependent increase of about 50% in the state of phosphorylation of the alpha subunit. This was followed by a slower increase in the 32P content of the alpha subunit over the next 5 min of depolarization. The enhanced phosphorylation was characterized by an initial rise (2 s) and subsequent decrease (30 s) in the phosphothreonine content of the alpha subunit. In contrast, the phosphoserine content of the alpha subunit slowly increased during the course of depolarization. Thermolytic two-dimensional phosphopeptide maps of the alpha subunit demonstrated that depolarization stimulated the labeling of a phosphopeptide associated with autoactivation. In parallel experiments, unlabeled synaptosomes were depolarized, and lysates of these synaptosomes were assayed for Ca2+/CaM kinase II activity. Depolarization produced a rapid (less than or equal to 2 s) increase in Ca2+-independent Ca2+/CaM kinase II activity. This activity returned to basal levels by 60 s. Thus, depolarization of intact synaptosomes is associated with the transient phosphorylation of Ca2+/CaM kinase II on threonine residues, presumably involving an autophosphorylation mechanism and concomitantly the transient generation of the Ca2+-independent form of Ca2+/CaM kinase II.  相似文献   

3.
A bovine heart protein which specifically inhibits calcium-dependent proteases has been purified to near homogeneity. The purified inhibitor had a Stokes radius of 6.8 nm estimated by gel filtration and a molecular weight of 145,000 estimated by sodium dodecyl sulfate-gel electrophoresis. There is evidence that it may be a glycoprotein. The inhibitor could be phosphorylated by bovine heart cyclic AMP-dependent protein kinase, and its inhibitory effect on Peak II (high-calcium-requiring) protease was modestly increased. However, no other phosphorylating or dephosphorylating conditions significantly influenced its activity. The inhibitor was not hydrolyzed by calcium-dependent proteases, but it was very sensitive to proteolytic inactivation by trypsin or proteases present in a lysosomal fraction from rat heart. Thus, proteolysis may represent a mechanism for decreasing the activity of the inhibitor in different physiologic or pathologic conditions.  相似文献   

4.
Depolarization of synaptosomes is known to cause a calcium-dependent increase in the phosphorylation of a number of proteins. It was the aim of this study to determine which protein kinases are activated on depolarization by analyzing the incorporation of 32Pi into synaptosomal phosphoproteins and phosphopeptides. The following well-characterized phosphoproteins were chosen for study: phosphoprotein "87K," synapsin Ia and Ib, phosphoproteins IIIa and IIIb, the catalytic subunits of calmodulin kinase II, and the B-50 protein. Each was initially identified as a phosphoprotein in lysed synaptosomes after incubation with [gamma-32P]ATP. Mobility on two-dimensional polyacrylamide gels and phosphorylation by specific protein kinases were the primary criteria used for identification. A technique was developed that allowed simultaneous analysis of the phosphopeptides derived from all of these proteins. Phosphopeptides were characterized in lysed synaptosomes after activating cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases in the presence of [gamma-32P]ATP. Phosphoproteins labelled in intact synaptosomes after incubation with 32Pi were then compared with those seen after ATP-labelling of lysed synaptosomes. As expected from previous work, phosphoprotein "87K," and synapsin Ia and Ib were labelled, but for the first time, phosphoproteins IIIa, IIIb, and the B-50 protein were identified as being labelled in intact synaptosomes; the calmodulin kinase II subunits were hardly phosphorylated. From a comparison of the phosphopeptide profiles it was found that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases are all active in intact synaptosomes and their activity is dependent on extrasynaptosomal calcium. The activation of cyclic AMP-stimulated protein kinases in intact synaptosomes was confirmed by the addition of dibutyryl cyclic AMP and theophylline which specifically increased the labelling of phosphopeptides in synapsin Ia and Ib and in phosphoproteins IIIa and IIIb. On depolarization of intact synaptosomes, a number of phosphopeptides showed increased labelling and the pattern suggested that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases were all activated. No new peptides were phosphorylated, suggesting that depolarization simply increased the activity of already active protein kinases and that there was no depolarization-specific increase in protein phosphorylation.  相似文献   

5.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

6.
In previous studies we determined that protein kinase C (PKC) and calcium are important intracellular regulators of neuronal angiotensin II (Ang II) binding sites. In the present study we investigated the effects of the protein kinase C (PKC) agonist phorbol esters (PE) and also a calcium ionophore (A23187) on the specific binding of [125I]Ang II to brain synaptosomes prepared from rats of different ages. The rationale was to determine whether the larae changes in the level of brain Ang II specific binding observed in different age rats are due to changes in the regulation of these sites by PKC or by calcium. The present data indicate no qualitative differences in the effects of PE or A23187 on [125I]Ang II specific binding to hypothalamic or brain stem synaptosomes, from either 2–5 or 70-day-old rats, i.e. the active PE TPA increased while A23187 decreased Ang II binding in all situations. Thus, the dramatic differences in brain Ang II specific binding seen with age appear not to be due to changes in regulation by PKC or calcium.  相似文献   

7.
Abstract: The influence of brain ischemia on the subcellular distribution and activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) was studied in various cortical rat brain regions during and after cerebral ischemia. Total CaM kinase II immunoreactivity (IR) and calmodulin binding in the crude synaptosomal fraction of all regions studied increase but decrease in the microsomal and cytosolic fractions, indicative of a translocation of CaM kinase II to synaptosomes. The translocation of CaM kinase II to synaptic junctions occurs but not to synaptic vesicles. The translocation in neocortex and CA3/DG (dentate gyrus) is transient, whereas in the hippocampal CA1 region, it persists for at least 1 day of reperfusion. The Ca2+/calmodulin-dependent activity of CaM kinase II in the subsynaptosomal fractions of neocortex is persistently decreased by up to 85%, despite the increase in CaM kinase II IR. The decrease in activity is more pronounced than the decline in IR, suggesting that CaM kinase II is covalently modified in the postischemic phase. The persistent translocation of CaM kinase II in the vulnerable ischemic CA1 region indicates that a pathological process is sustained in the area after the reperfusion phase and this may be of significance for ischemic brain injury.  相似文献   

8.
The phosphorylation by casein kinase TS (II) of the modulator protein of the ATP, Mg-dependent phosphatase increases after preincubation with the PCSH1 phosphatase or with the catalytic subunit of the ATP, Mg-dependent phosphatase. Dephosphorylation by the two phosphatases combined leads to the incorporation of 2 mol phosphate per mol modulator (at Ser residues). Occupancy of the ATP, Mg-dependent phosphatase phosphorylation site(s) is a negative determinant in the phosphorylation of the modulator by kinase TS. Among the PCS phosphatases PCSH1 shows the highest activity toward the 32P-Ser residues labeled by kinase TS in untreated or previously dephosphorylated modulator, while the ATP, Mg-dependent phosphatase is totally ineffective. Protamine stimulates all phosphatase activities, so that the catalytic subunit of the ATP, Mg-dependent phosphatase becomes almost as effective as the PCSC phosphatase in dephosphorylating the kinase TS sites.  相似文献   

9.
There is considerable evidence that the activity of the neuronal dopamine transporter (DAT) is dynamically regulated and a putative implication of its phosphorylation in this process has been proposed. However, there is little information available regarding the nature of physiological stimuli that contribute to the endogenous control of the DAT function. Based on the close relationship between glutamatergic and dopaminergic systems in the striatum, we investigated the modulation of the DAT activity by metabotropic glutamate receptors (mGluRs). Short-term incubations of rat striatal synaptosomes with micromolar concentrations of the group I mGluR selective agonist (S)-3,5-dihydroxyphenylglycine were found to significantly decrease the DAT capacity and efficiency. This alteration was completely prevented by a highly selective mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). The effect of (S)-3,5-dihydroxyphenylglycine was also inhibited by staurosporine and by selective inhibitors of protein kinase C and calcium calmodulin-dependent protein kinase II. Co-application of okadaic acid prolonged the transient effect of the agonist, supporting a critical role for phosphorylation in the modulation of the DAT activity by mGluRs. In conclusion, we propose that striatal mGluR5 contribute to the control of the DAT activity through concomitant activation of both protein kinase C and calcium calmodulin-dependent protein kinase II.  相似文献   

10.
11.
1. In freshly isolated rat hepatocytes, the activity of the AMP-activated protein kinase is high, but decreases by 5-10-fold during incubation of the cells for 60 min. The expressed activity of acetyl-CoA carboxylase is initially very low, then rises in a reciprocal manner to the AMP-activated protein kinase activity. For both enzymes, treatment of partially purified preparations under dephosphorylating conditions abolishes the difference in activity between freshly isolated and preincubated cells. Thus, both the high activity of the AMP-activated protein kinase and the low activity of acetyl-CoA carboxylase in freshly isolated cells can be explained by phosphorylation. 2. Immediately after isolation, the hepatocytes have AMP/ATP ratios that are unphysiologically high (approximately 1:1.5). During incubation of the cells for 60 min, AMP levels fall and ATP levels rise so that the ratio becomes about 1:15, close to previous estimates of the ratio in freeze-clamped liver. The fall in AMP/ATP ratio precedes the decrease in AMP-activated protein kinase activity. 3. In cells which have been incubated for 60 min, treatment with 20 mM fructose, which causes a large but transient increase in the AMP/ATP ratio, also causes concomitant activation of the AMP-activated protein kinase and inactivation of acetyl-CoA carboxylase. 4. In all cases described above, the increases in activity of acetyl-CoA carboxylase were blocked by treatment with the cell-permeable protein phosphatase inhibitor, okadaic acid. However, the decreases in activity of the AMP-activated protein kinase were not blocked by this inhibitor. This is consistent with the finding that okadaic-acid-insensitive protein phosphatase 2C is the most effective at dephosphorylating the kinase in cell-free assays. 5. The results above suggested that AMP either promotes phosphorylation, or inhibits dephosphorylation, of the kinase. Studies in a partially purified cell-free system suggested that the former hypothesis was correct; reactivation of dephosphorylated AMP-activated protein kinase by kinase kinase was completely dependent on the presence of AMP. 6. Our results, obtained in both intact cells and a cell-free system, suggest that rises in the AMP/ATP ratio promote phosphorylation of the AMP-activated protein kinase by the kinase kinase, as well as causing direct allosteric activation. This represents a very sensitive system for switching off lipid biosynthetic pathways when ATP levels are limiting. The results with okadaic acid also suggest that protein phosphatase 2C is mainly responsible for dephosphorylation of the AMP-activated protein kinase in intact hepatocytes.  相似文献   

12.
The BarA-UvrY two-component system family is strongly associated with virulence but is poorly understood at the molecular level. During our attempts to complement a barA deletion mutant, we consistently generated various mutated BarA proteins. We reasoned that characterization of the mutants would help us to better understand the signal transduction mechanism in tripartite sensors. This was aided by the demonstrated ability to activate the UvrY regulator with acetyl phosphate independently of the BarA sensor. Many of the mutated BarA proteins had poor complementation activity but could counteract the activity of the wild-type sensor in a dominant-negative fashion. These proteins carried point mutations in or near the recently identified HAMP linker, previously implicated in signal transduction between the periplasm and cytoplasm. This created sensor proteins with an impaired kinase activity and a net dephosphorylating activity. Using further site-directed mutagenesis of a HAMP linker-mutated protein, we could demonstrate that the phosphoaccepting aspartate 718 and histidine 861 are crucial for the dephosphorylating activity. Additional analysis of the HAMP linker-mutated BarA sensors demonstrated that a dephosphorylating activity can operate via phosphotransfer within a tripartite sensor dimer in vivo. This also means that a tripartite sensor can be arranged as a dimer even in the dephosphorylating mode.  相似文献   

13.
Light-harvesting complex-II (LHC-II) phosphatase activity has generally been examined in the intact thylakoid membrane. A recent report of peptide-phosphatase activity associated with the chloroplast stromal fraction (Hammer, M.F. et al. (1995) Photosynth Res 44: 107–115) has led to the question of whether this activity is capable of dephosphorylating membrane-bound LHC-II. To this end, heat-treated thylakoid membranes were examined as a potential LHC-II phosphatase substrate. Following incubation of the thylakoid membrane at 60°C for 15 min, the endogenous protein phosphatase and kinase activities were almost eliminated. Heat-inactivated phosphomembranes exhibited minimal dephosphorylation of the light harvesting complex-II. Peptide-phosphatase activities isolated from the thylakoid and stromal fraction were able to dephosphorylate LHC-II in heat-inactivated phosphomembranes. The stromal phosphatase showed highest activity against LHC-II at pH 9. Dephosphorylation of the LHC-II by the stromal enzyme was not inhibited by molybdate, vanadate or tungstate ions, but was partially inhibited by EDTA and a synthetic phosphopeptide mimicking the LHC-II phosphorylation site. Thus, the previously identified stromal phosphatase does appear capable of dephosphorylating authentic LHC-II in vivo.Abbreviations CPP chymotryptic phosphopeptides - LHC-II light-harvesting complex of Photosystem II - MP protein phosphatase fractionated from the thylakoid membrane - P2Thr synthetic phosphopeptide MRK-SAT(p)TKKVW - SP protein phosphatase fractionated from the stromal compartment  相似文献   

14.
The distribution of protein kinase C activity and specific phorbol ester binding sites between soluble and particulate fractions of isolated guinea-pig cerebral cortical synaptosomes is examined following preincubation with phorbol esters. Half-maximal decrease in cytosolic activity requires 10 nM 4 beta-phorbol myristoyl acetate. Specific [3H]phorbol dibutyrate binding sites are translocated from cytoplasmic to particulate fractions in parallel with protein kinase C activity. Depolarization of the plasma membrane by 30 mM KCl does not cause translocation of protein kinase C. 1 microM 4 beta-phorbol myristoyl acetate and 1 microM 4 beta-phorbol didecanoate (but not 1 microM 4 alpha-phorbol didecanoate) enhance the release of glutamate from synaptosomes partially depolarized by 10 mM KCl; however, 4 beta-phorbol myristoyl acetate is ineffective at 20 nM. 1 microM 4 beta-phorbol myristoyl acetate slightly increases the cytosolic free Ca2+ concentration of polarized synaptosomes, but not that following partial depolarization. 4 beta-Phorbol myristoyl acetate causes a concentration-dependent increase in the Ca2+-dependent glutamate release induced by sub-optimal ionomycin concentrations, but is without effect on the release induced by maximal ionomycin. It is concluded that phorbol esters stereospecifically enhance the Ca2+-sensitivity of glutamate release, but that higher concentrations may be required than for protein kinase C translocation in the same preparation. Instead the enhancement may be related to the rapid inactivation of protein kinase C which occurs with phorbol esters.  相似文献   

15.
Brief freezing as a means of transiently permeabilizing synaptosomes was explored. Rat brain synaptosomes frozen and thawed in the presence of 5% dimethyl sulfoxide, a cryoprotectant, were shown to release, in a calcium-dependent manner, previously accumulated [3H]norepinephrine and [14C]acetylcholine in response to elevated [K+]. In addition, synaptosomes subjected to freeze/thaw were shown to retain their ability to exhibit resting protein phosphorylation, as well as stimulated protein phosphorylation occurring in response to calcium influx. Brief freezing of synaptosomes in the presence of [gamma-32P]ATP and either the catalytic subunit of cyclic AMP-dependent protein kinase or calcium/calmodulin-dependent protein kinase II rendered the synaptosomal interior accessible to these agents, as reflected by the phosphorylation of substrate proteins, such as synapsin I, which reside within the nerve terminal. Inclusion of inhibitors of these protein kinases during freeze/thaw blocked synaptosomal protein phosphorylation, indicating that the inhibitors were also introduced. After freezing, the synaptosomes resealed rapidly and spontaneously, as shown by the inability of any of the agents to elicit an effect on phosphorylation when added at the end of the freezing period. The permeabilization procedure should contribute to an understanding of the functional roles of phosphoproteins, and of their associated protein kinases and protein phosphatases, in nerve terminals.  相似文献   

16.
Neurocatin, a neuroregulatory factor isolated from mammalian brain, is a powerful affector of dopamine synthesis in striatal rat synaptosomes. Incubation of intact synaptosomes with neurocatin caused an increase in the rate of dopamine synthesis measured by accumulation of DOPA. The increase is rapid (within two minutes) and dependent on the concentration of added neurocatin. The stimulatory effect of neurocatin on dopamine synthesis occurred only in intact synaptosomes and was almost completely abolished by lysis of the synaptosomes with Triton X-100 or sonification prior to neurocatin addition. The kinetic parameters of tyrosine hydroxylase were measured in lysates prepared from synaptosomes preincubated with neurocatin. These showed that with increasing neurocatin concentration there was an increase in Vmax with no significant change in KM for the pteridine cofactor, compared to control. Activation of tyrosine hydroxylase by neurocatin is at least partially caused by a receptor mediated increase in phosphorylation of the enzyme. Protein kinase C and protein kinase II may be involved in this process.  相似文献   

17.
Regulation of the cdc25 protein during the cell cycle in Xenopus extracts.   总被引:48,自引:0,他引:48  
A Kumagai  W G Dunphy 《Cell》1992,70(1):139-151
The cdc25 protein is a highly specific tyrosine phosphatase that triggers mitosis by dephosphorylating the cdc2 protein kinase. Using Xenopus extracts, we have found that the cdc25 protein is active at a low level throughout interphase. Near the onset of mitosis, the cdc25 protein undergoes a marked elevation in phosphatase activity that coincides with an extensive phosphorylation of the protein in its N-terminal region. In vitro dephosphorylation of this hyperphosphorylated form of cdc25 reduces its phosphatase activity back to the interphase level. Moreover, treatment of interphase Xenopus extracts with okadaic acid, a phosphatase inhibitor that accelerates the entry into mitosis, elicits both the premature hyperphosphorylation of cdc25 and the stimulation of its cdc2-specific tyrosine phosphatase activity. These experiments demonstrate the existence of a cdc25 regulatory system consisting of both a stimulatory kinase that phosphorylates a putative regulatory domain of the cdc25 protein and an inhibitory serine/threonine phosphatase that counteracts this kinase activity.  相似文献   

18.
In the absence of any known studies dealing with status of vitamin B6 metabolism in mammalian retinas, the concentration of pyridoxal phosphate and the activity of its synthesizing enzyme pyridoxal kinase were determined in rat retina and bovine retina and its subcellular compartments. In bovine retina, the highest concentration of pyridoxal phosphate (148 pmol/mg protein) was present in pellet 2 fraction containing synaptosomes comparable to those isolated from brain. The second highest concentration of pyridoxal phosphate (91 pmol/mg protein) was present in pellet 1 fraction containing large synaptosomes resembling photoreceptor cell terminals. The concentrations of pyridoxal phosphate in pellets 1 and 2 fractions were approx 3- to 6-fold higher than that found in the whole retina. The concentration of pyridoxal phosphate and the activity of pyridoxal kinase in the rat retina were considerably higher than those observed in the bovine retina. In general, no apparent correlation existed between the concentrations of pyridoxal phosphate and the activities of pyridoxal kinase in bovine retina and its subcellular compartments.  相似文献   

19.
The expression of protein kinase C (PKC) subspecies in synaptosomes prepared from a number of adult brain regions was compared. Cerebral cortical and thalamic/striatal synaptosomes were found to express three peaks of enzyme activity upon hydroxyapatite chromatography, corresponding to the type I(gamma), type II(beta), and type III(alpha) subspecies. Synaptosomes prepared from either the hippocampus or the cerebellar cortex, however, contained only two major peaks, corresponding to the alpha- and beta-subspecies, with barely detectable levels of the gamma-subspecies, even though these tissue areas were enriched in the latter enzyme. When the ontogenic pattern of hippocampal synaptosomal PKC subspecies was examined, it was found that at postnatal day 7, significant quantities of the gamma-subspecies were present and that this subspecies reached its peak levels at around postnatal day 14, before steadily declining to its adult level. Similar changes were observed also for the gamma-subspecies in cerebellar cortex synaptosomes. The dynamic changes in the synaptosomal PKC subspecies take place at a critical period in the development of the rat brain, concomitant with an active period of synaptogenesis, suggesting that it may play a role in synaptogenesis.  相似文献   

20.
The phosphorylation of rat cardiac microsomal proteins was investigated with special attention to the effects of okadaic acid (an inhibitor of protein phosphatases), inhibitor 2 of protein phosphatase 1 and inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). The results showed that okadaic acid (5 µM) modestly but reproducibly augmented the protein kinase A-catalyzed phospholamban (PLN) phosphorylation, although exerted little effect on the calcium/calmodulin kinase-catalyzed PLN phosphorylation. Microsomes contained three other substrates (Mr 23, 19 and 17 kDa) that were phosphorylated by protein kinase A but not by calcium/calmodulin kinase. The protein kinase A-catalyzed phosphorylation of these three substrates was markedly (2-3 fold) increased by 5 µM okadaic acid. Calmodulin was found to antagonize the action of okadaic acid on such phosphorylation. Protein kinase A inhibitor was found to decrease the protein kinase A-catalyzed phosphorylation of microsomal polyp eptides. Unexpectedly, inhibitor 2 was also found to markedly decrease protein kinase A-catalyzed phosphorylation of phospholamban as well these other microsomal substrates. These results are consistent with the views that protein phosphatase 1 is capable of dephosphorylating membrane-associated phospholamban when it is phosphorylated by protein kinase A, but not by calcium/calmodulin kinase, and that under certain conditions, calcium/calmodulin-stimulated protein phosphatase (protein phosphatase 2B) is also able to dephosphorylate PLN phosphorylated by protein kinase A. Additionally, the observations show that protein phosphatase 1 is extremely active against the three protein kinase A substrates (Mr 23, 19 and 17 kDa) that were present in the isolated microsomes and whose state of phosphorylation was particularly affected in the presence of dimethylsulfoxide. Protein phosphatase 2B is also capable of dephosphorylating these three substrates. (Mol Cell Biochem 175: 109–115, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号