首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Architecture of a gamma retroviral genomic RNA dimer   总被引:2,自引:0,他引:2  
Badorrek CS  Weeks KM 《Biochemistry》2006,45(42):12664-12672
Retroviral genomes contain two sense-strand RNAs that are noncovalently linked at their 5' ends, forming a dimer. Establishing a structure for this dimer is an obligatory first step toward understanding the fundamental role of the dimeric RNA in retroviral biology. We developed a secondary structure model for the minimal dimerization active sequence (MiDAS) for the Moloney murine sarcoma virus in the final dimer state using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). In this model, two self-complementary, or palindromic, sequences (PAL1 and PAL2) form extended intermolecular duplexes of 10 and 16 base pairs, respectively. The monomeric starting state was shown previously to contain a flexible domain in which nucleotides do not form stable interactions with other parts of the RNA. In the final dimer state, portions of this initial flexible domain form stable base pairs, while previously base-paired elements lie in a new flexible domain. Thus, partially overlapping and structurally well-defined flexible domains are prominent features of both monomer and dimer states. We then used hydroxyl radical cleavage experiments to characterize the global architecture of the dimer state. Extensive regions, including portions of both PAL1 and PAL2, are occluded from solvent-based cleavage indicating that the MiDAS domain does not function simply as a collection of autonomous secondary structure elements. Instead, the retroviral dimerization domain adopts a compact architecture characterized by close packing of its constituent helices.  相似文献   

2.
RNA dimerization is an essential step in the retroviral life cycle. Dimerization and encapsidation signals, closely linked in HIV-2, are located in the leader RNA region. The SL1 motif and nucleocapsid protein are considered important for both processes. In this study, we show the structure of the HIV-2 leader RNA (+1-560) captured as a loose dimer. Potential structural rearrangements within the leader RNA were studied. In the loose dimer form, the HIV-2 leader RNA strand exists in vitro as a single global fold. Two kissing loop interfaces within the loose dimer were identified: SL1/SL1 and TAR/TAR. Evidence for these findings is provided by RNA probing using SHAPE, chemical reagents, enzymes, non-denaturing PAGE mobility assays, antisense oligonucleotides hybridization and analysis of an RNA mutant. Both TAR and SL1 as isolated domains are bound by recombinant NCp8 protein with high affinity, contrary to the hairpins downstream of SL1. Foot-printing of the SL1/NCp8 complex indicates that the major binding site maps to the SL1 upper stem. Taken together, these data suggest a model in which TAR hairpin III, the segment of SL1 proximal to the loop and the PAL palindromic sequence play specific roles in the initiation of dimerization.  相似文献   

3.
4.
5.
Genomic RNA dimerization is an essential process in the retroviral replication cycle. In vitro, HIV-2 RNA dimerization is mediated at least in part by direct intermolecular interaction at stem-loop 1 (SL1) within the 5'-untranslated leader region (UTR). RNA dimerization is thought to be regulated via alternate presentation and sequestration of dimerization signals by intramolecular base-pairings. One of the proposed regulatory elements is a palindrome sequence (pal) located upstream of SL1. To investigate the role of pal in the regulation of HIV-2 dimerization, we randomized this motif and selected in vitro for dimerization-competent and dimerization-impaired RNAs. Energy minimization folding analysis of these isolated sequences suggests the involvement of pal region in several short-distance intramolecular interactions with other upstream and downstream regions of the UTR. Moreover, the consensus predicted folding patterns indicate the altered presentation of SL1 depending on the interactions of pal with other regions of RNA. The data suggest that pal can act as a positive or negative regulator of SL1-mediated dimerization and that the modulation of base-pairing arrangements that affect RNA dimerization could coordinate multiple signals located within the 5'-UTR.  相似文献   

6.
Sequences from the 5' end of type 1 human immunodeficiency virus RNA dimerize spontaneously in vitro in a reaction thought to mimic the initial step of genomic dimerization in vivo. Dimer initiation has been proposed to occur through a "kissing-loop" interaction involving a specific RNA stem-loop element designated SL1: the RNA strands first interact by base pairing through a six-base GC-rich palindrome in the loop of SL1, whose stems then isomerize to form a longer interstrand duplex. We now report a mutational analysis aimed at defining the features of SL1 RNA sequence and secondary structure required for in vitro dimer formation. Our results confirm that mutations which destroy complementarity in the SL1 loop abolish homodimer formation, but that certain complementary loop mutants can heterodimerize. However, complementarity was not sufficient to ensure dimerization, even between GC-rich loops, implying that specific loop sequences may be needed to maintain a conformation that is competent for initial dimer contact; the central GC pair of the loop palindrome appeared critical in this regard, as did two or three A residues which normally flank the palindrome. Neither the four-base bulge normally found in the SL1 stem nor the specific sequence of the stem itself was essential for the interaction; however, the stem structure was required, because interstrand complementarity alone did not support dimer formation. Electron microscopic analysis indicated that the RNA dimers formed in vitro morphologically resembled those isolated previously from retroviral particles. These results fully support the kissing-loop model and may provide a framework for systematically manipulating genomic dimerization in type 1 human immunodeficiency virus virions.  相似文献   

7.
HIV-1 retroviral genomic RNA dimerization is initiated by loop-loop interactions between the SL1 stem-loops of two identical RNA molecules. The SL1-SL1 unstable resulting kissing complex (KC) then refolds irreversibly into a more stable complex called extended dimer (ED). Although the structures of both types of complex have been determined, very little is known about the conformational pathway corresponding to the transition, owing to the difficulty of observing experimentally intermediate conformations. In this study, we applied targeted molecular dynamics simulation techniques (TMD) to the phosphorus atoms for monitoring this pathway for the backbone, and a two-step strategy was adopted. In a first step, called TMD(-1), the dimer structure was constrained to progressively move away from KC without indicating the direction, until the RMSD from KC reaches 36A. A total of 20 TMD(-1) simulations were performed under different initial conditions and different simulation parameters. For RMSD ranging between 0 and 22A, the whole set of TMD(-1) simulations follows a similar pathway, then divergences are observed. None of the simulations leads to the ED structure. At RMSD=22A, the dimers look like two parallel Us, still linked by the initial loop-loop interaction, but the strands of the stems (the arms of the Us) are positioned in such a manner that they can form intramolecular as well as intermolecular Watson-Crick base-pairs. This family of structure is called UU. In a second step (TMD simulations), 18 structures were picked up along the pathways generated with TMD(-1) and were constrained to move toward ED by decreasing progressively their RMSD from ED. We found that only structures from the UU family are able to easily reach ED-like conformations of the backbones without exhibiting a large constraint energy.  相似文献   

8.
The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses.  相似文献   

9.
Tertiary interactions are crucial in maintaining the tRNA structure and functionality. We used a combined sequence analysis and quantum mechanics approach to calculate accurate energies of the most frequent tRNA tertiary base pairing interactions. Our analysis indicates that six out of the nine classical tertiary interactions are held in place mainly by H-bonds between the bases. In the remaining three cases other effects have to be considered. Tertiary base pairing interaction energies range from -8 to -38 kcal/mol in yeast tRNA(Phe) and are estimated to contribute roughly 25% of the overall tRNA base pairing interaction energy. Six analyzed posttranslational chemical modifications were shown to have minor effect on the geometry of the tertiary interactions. Modifications that introduce a positive charge strongly stabilize the corresponding tertiary interactions. Non-additive effects contribute to the stability of base triplets.  相似文献   

10.
11.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

12.
Although their genomes cannot be aligned at the nucleotide level, the HIV-1/SIVcpz and the HIV-2/SIVsm viruses are closely related lentiviruses that contain homologous functional and structural RNA elements in their 5'-untranslated regions. In both groups, the domains containing the trans-activating region, the 5'-copy of the polyadenylation signal, and the primer binding site (PBS) are followed by a short stem-loop (SL1) containing a six-nucleotide self-complementary sequence in the loop, flanked by unpaired purines. In HIV-1, SL1 is involved in the dimerization of the viral RNA, in vitro and in vivo. Here, we tested whether SL1 has the same function in HIV-2 and SIVsm RNA. Surprisingly, we found that SL1 is neither required nor involved in the dimerization of HIV-2 and SIV RNA. We identified the NarI sequence located in the PBS as the main site of HIV-2 RNA dimerization. cis and trans complementation of point mutations indicated that this self-complementary sequence forms symmetrical intermolecular interactions in the RNA dimer and suggested that HIV-2 and SIV RNA dimerization proceeds through a kissing loop mechanism, as previously shown for HIV-1. Furthermore, annealing of tRNA(3)(Lys) to the PBS strongly inhibited in vitro RNA dimerization, indicating that, in vivo, the intermolecular interaction involving the NarI sequence must be dissociated to allow annealing of the primer tRNA.  相似文献   

13.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

14.
Retroviruses contain dimeric RNA consisting of two identical copies of the genomic RNA. The interaction between these two RNA molecules occurs near their 5' ends. A region upstream from the splice donor comprising an auto-complementary sequence has been identified as being responsible for the initiation of the formation of dimeric HIV-1(Lai) RNA. This region (SL1), part of the PSI encapsidation domain, can adopt a stem-loop structure. It has already been shown that this stem-loop structure can initiate the formation of two distinct dimers differing in their thermostability: a loop-loop dimer or 'kissing complex' and an extended dimer. We report here a study using UV and 1D NMR spectroscopy of the dimerization of a short oligoribonucleotide (23 nucleotides) spanning nucleotides 248-270 of the HIV-1(Lai) SL1 sequence, in order to derive the thermodynamic parameters associated with the transition from the loop-loop complex to the extended dimer. The temperature dependence of the UV absorbency shows an hypochromicity for this transition with a small enthalpy change equal to - 29.4 +/- 5 kcal x mol-1, together with a concentration independent transition which implies a monomolecular reaction. On the other hand, our NMR results don't indicate a dissociation of the GCGCGC sequence engaged in the loop-loop interaction during the rearrangement of the loop-loop complex into the extended dimer. Our data suggest that the loop-loop interaction is maintained during the temperature dependent conformational change while the intramolecular base-pairing of the stems is disrupted and then reconstituted to form an intermolecular base-pairing leading to an extended dimer.  相似文献   

15.
16.
17.
An essential step in the replication cycle of all retroviruses is the dimerization of genomic RNA prior to or during budding and maturation of the viral particle. In HIV-1, a 5' leader region site termed stem-loop 1 (SL1) promotes RNA dimerization in vitro and influences dimerization in vivo. In HIV-2, two sequences promote dimerization of RNA fragments in vitro: the 5'-end of the primer-binding site (PBS) and a stem-loop region homologous to the HIV-1 SL1 sequence. Because HIV-2 RNA constructs of different lengths use these two dimerization signals disproportionately, we hypothesized that other sequences could modulate their relative utilization. Here, we characterized the influence of sequences upstream and downstream of the major splice donor site on the formation of HIV-2 RNA dimers in vitro using a variety of RNA constructs and dimerization and electrophoresis protocols. We first assayed the formation of loose or tight dimers for 1-444 and 1-561 model RNAs. Although both RNAs could form PBS-dependent loose dimers, the 1-561 RNA was unable to make SL1-dependent tight dimers. Using RNAs truncated at their 5'- and/or 3'-ends and by making compensatory base substitutions, we found that two elements interfere with the formation of SL1-dependent tight dimers. The cores of these elements are located at nucleotides 189-196 and 543-550. Our results suggest that base pairing between these sequences prevents the formation of SL1-dependent tight dimers, probably by sequestering SL1 in a stable intramolecular arrangement. Moreover, we found that nucleotides downstream of SL1 decreased the rate of tight dimerization. Interestingly, dimerization at 37 degrees C in the presence of nucleocapsid protein increased the yield of SL1-mediated tight dimerization in vitro, even in the presence of the two interfering elements, suggesting a relationship between the nucleocapsid protein and activation of the SL1 dimerization signal in vivo.  相似文献   

18.
19.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

20.
The effects of 5-fluorouridine (FUrd) and 5-fluorodeoxyuridine (FdUrd) substitution on the stabilities of duplex RNA and DNA have been studied to determine how FUrd substitution in nucleic acids may alter the efficiency of biochemical processes that require complementary base pairing for molecular recognition. The parent sequence, 5'-GCGAAUUCGC, contains two non-equivalent uridines. Eight oligonucleotides (four RNA and four DNA) were prepared with either zero, one or two Urd substituted by FUrd. The stability of each self-complementary duplex was determined by measuring the absorbance at 260 nm as a function of temperature. Tm values were calculated from the first derivative of the absorbance versus temperature profiles and values for delta H0 and delta S0 were calculated from the concentration dependence of the Tm. Individual absorbance versus temperature curves were also analyzed by a parametric approach to calculate thermodynamic parameters for the duplex to single-stranded transition. Analysis of the thermodynamic parameters for each oligonucleotide revealed that FUrd substitution had sequence-dependent effects in both A-form RNA and B-form DNA duplexes. Conservation of helix geometry in FUrd-substituted duplexes was determined by CD spectroscopy. FUrd substitution at a single site in RNA stabilized the duplex (delta delta G37 = 0.8 kcal/mol), largely due to more favorable stacking interactions. FdUrd substitution at a single site in DNA destabilized the duplex (delta delta G37 = 0.3 kcal/mol) as a consequence of less favorable stacking interactions. All duplexes melt via single cooperative transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号