首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.  相似文献   

3.
4.
5.
Two groups of anaerobic genes (genes induced in anaerobic cells and repressed in aerobic cells) are negatively regulated by heme, a metabolite present only in aerobic cells. Members of both groups, the hypoxic genes and the DAN/TIR/ERG genes, are jointly repressed under aerobic conditions by two factors. One is Rox1, an HMG protein, and the second, originally designated Rox7, is shown here to be Mot3, a global C2H2 zinc finger regulator. Repression of anaerobic genes results from co-induction of Mot3 and Rox1 in aerobic cells. Repressor synthesis is triggered by heme, which de-represses a mechanism controlling expression of both MOT3 and ROX1 in anaerobic cells; it includes Hap1, Tup1, Ssn6 and a fourth unidentified factor. The constitutive expression of various anaerobic genes in aerobic rox1Δ or mot3Δ cells directly implies that neither factor can repress by itself at endogenous levels and that stringent aerobic repression results from the concerted action of both. Mot3 and Rox1 are not essential components of a single complex, since each can repress independently in the absence of the other, when artificially induced at high levels. Moreover, the two repression mechanisms appear to be distinct: as shown here repression of ANB1 by Rox1 alone requires Tup1–Ssn6, whereas repression by Mot3 does not. Though artificially high levels of either factor can repress well, the absolute efficiency observed in normal cells when both are present—at much lower levels—demonstrates a novel inhibitory synergy. Evidently, expression levels for the two mutually dependent repressors are calibrated to permit a range of variation in basal aerobic expression at different promoters with differing operator site combinations.  相似文献   

6.
7.
8.
9.
10.
Abramova NE  Cohen BD  Sertil O  Kapoor R  Davies KJ  Lowry CV 《Genetics》2001,157(3):1169-1177
The DAN/TIR genes of Saccharomyces cerevisiae encode homologous mannoproteins, some of which are essential for anaerobic growth. Expression of these genes is induced during anaerobiosis and in some cases during cold shock. We show that several heme-responsive mechanisms combine to regulate DAN/TIR gene expression. The first mechanism employs two repression factors, Mox1 and Mox2, and an activation factor, Mox4 (for mannoprotein regulation by oxygen). The genes encoding these proteins were identified by selecting for recessive mutants with altered regulation of a dan1::ura3 fusion. MOX4 is identical to UPC2, encoding a binucleate zinc cluster protein controlling expression of an anaerobic sterol transport system. Mox4/Upc2 is required for expression of all the DAN/TIR genes. It appears to act through a consensus sequence termed the AR1 site, as does Mox2. The noninducible mox4Delta allele was epistatic to the constitutive mox1 and mox2 mutations, suggesting that Mox1 and Mox2 modulate activation by Mox4 in a heme-dependent fashion. Mutations in a putative repression domain in Mox4 caused constitutive expression of the DAN/TIR genes, indicating a role for this domain in heme repression. MOX4 expression is induced both in anaerobic and cold-shocked cells, so heme may also regulate DAN/TIR expression through inhibition of expression of MOX4. Indeed, ectopic expression of MOX4 in aerobic cells resulted in partially constitutive expression of DAN1. Heme also regulates expression of some of the DAN/TIR genes through the Rox7 repressor, which also controls expression of the hypoxic gene ANB1. In addition Rox1, another heme-responsive repressor, and the global repressors Tup1 and Ssn6 are also required for full aerobic repression of these genes.  相似文献   

11.
12.
13.
14.
15.
16.
唑类抗真菌药物广泛用于临床和农业。唑类药物通过与羊毛甾醇14α-去甲基化酶(Erg11p/Cyp51)结合,抑制麦角甾醇合成,同时导致有毒甾醇积累。真菌可快速在转录水平上对唑类药物胁迫作出响应而导致耐药性,尤其是唑类药物外排泵基因和麦角甾醇合成相关基因表达的上调。农业和临床上绝大多数唑类药物耐药菌株的形成都是由麦角甾醇合成基因和唑类药物外排泵表达的变化或是突变所致。一些转录因子(如Pdr1p、Pdr3p、Upc2p、Yap1p、Tac1p、Mrr1p、CCG-8)和信号通路(如cAMP途径、PKC-MAPK途径、HOG MAPK途径、钙调磷酸酶途径)均参与对药物外排泵基因和麦角甾醇合成基因等的调控,影响唑类药物耐药性。针对于这些调控因子设计的抑制剂将有助于提高唑类药物的治疗效果。本文概述了唑类药物的抑菌机制、真菌对唑类药物耐药性形成的原因、真菌对唑类药物适应性响应机理,并对未来此领域的热点和方向进行了展望。  相似文献   

17.
18.
19.
Saccharomyces cerevisiae PAU genes constitute the largest multigene family in yeast, with 23 members located mainly in subtelomeric regions. The role and regulation of these genes were previously unknown. We detected PAU gene expression during alcoholic fermentation. An analysis of PAU gene regulation using PAU-lacZ fusions and Northern analyses revealed that they were regulated by anaerobiosis. PAU genes display, however, different abilities to be induced by anaerobiosis and this appears to be related to their chromosomal localization; two subtelomeric copies are more weakly inducible than an interstitial one. We show that PAU genes are negatively regulated by oxygen and repressed by haem. Examination of PAU gene expression in rox1Delta and tup1Delta strains indicates that PAU repression by oxygen is mediated by an unknown, haem-dependent pathway, which does not involve the Rox1p anaerobic repressor but requires Tup1p. Given the size of the gene family, PAU genes could be expected to be important during yeast life and some of them probably help the yeast to cope with anaerobiosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号