首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-ultraviolet photoproducts of l-tryptophan (TP) differentially inhibited deoxyribonucleic acid (DNA) replication in wild-type cells and uvrA, polA1, and recA recB double mutants of Escherichia coli. Wild-type cells labeled in their DNA with [(3)H]thymidine in the presence of TP produced small pieces of DNA (7 x 10(6) daltons), which corresponded in size to late replicative intermediates of discontinuous DNA synthesis. Moreover, when TP was present, it took five times longer to chase the low-molecular-weight DNA pieces into high-molecular-weight DNA. The observation of replicative intermediates in the presence of TP, and their slow chase into high-molecular-weight DNA in the presence of TP, is strong evidence that TP stabilizes replication gaps in E. coli DNA. Although TP slowed DNA replication in wild-type cells, this effect was transient and DNA synthesis eventually resumed at a normal rate. However, in polA1 and recA recB mutants, DNA synthesis was completely inhibited. Determinations of size and total counts of cells incubated in TP suggested that TP uncouples cell division from DNA replication in recA recB mutants, whereas these processes remain coupled in wild-type cells and in uvrA and polA1 mutants. The slow chase of TP-stabilized pieces of DNA in the presence of TP suggested that the selective effect of TP on DNA synthesis and viability in repair-deficient mutants is a result of TP inhibition of replication gap closure.  相似文献   

2.
Repair of cross-linked DNA was studied in Escherichia coli strains carrying mutations affecting DNA metabolism. In wild-type cells, DNA strands cut during cross-link removal were rejoined during a subsequent incubation into high-molecular-weight molecules. This rejoining was dependent on gene products involved in genetic recombination. A close correlation was found relating recombination proficiency, the rate of strand rejoining, and formation of viable progeny after DNA cross-linking by treatment with psoralen and light. Wild-type cells and other mutants which were Rec+ (sbcB, recL, recL sbcB, recB recC sbcA, recB recC sbcB, xthA1, and xthA11) rejoined cut DNA strands at a rate of 0.8 +/- 0.1 min -1 at 37 degrees C and survived 53 to 71 cross-links per chromosome. recB, recC, recB recC, recF, or polA strains showed reduced rates of strand rejoining and survived 4 to 13 cross-links per chromosome. Recombination-deficient strains (recA, recB recC sbcB recF, recB recL) and lexA failed to rejoin DNA strands after crosslink removal and were unable to form colonies after treatments producing as few as one to two cross-links per chromosome. Strand rejoining occurred normally in cells with mutations affecting DNA replication (dnaA, danB, dnaG, and dnaE) under both permissive and nonpermissive conditions for chromosome replication. In a polA polB dnaE strain strand rejoining occurred at 32 degree C but not at 42 degree C, indicating that some DNA synthesis was required for formation of intact recombinant molecules.  相似文献   

3.
Conditional lethality of the Escherichia coli polA12 uvrE502 double mutant may be overcome by a mutation that has been termed polA350. The polA350 mutation restored the polymerizing activity of deoxyribonucleic acid polymerase I at 42 C in the polA12 mutant and partially suppressed ultraviolet (UV) and methylmethane sulfonate sensitivities of the polA12. Mapping experiments have located polA350 between metE and polA12, very close to the latter. The strain carrying polA12 polA350 and recB21 was viable at 42 C. The effects of the recB21 and polA12 polA350 combination on the UV sensitivity were additive. The triple mutant polA12 polA350 uvrE502 was more UV sensitive than the single uvrE502 mutant.  相似文献   

4.
The extent of repair of single-strand breaks (incision breaks) induced in the deoxyribonucleic acid (DNA) of Escherichia coli K-12 cells by the uvr gene-dependent excision repair process after ultraviolet (UV) radiation was determined in the wild-type, polA1, recA56, recB21, and exrA strains. The wild-type strain repaired all incision breaks after incident doses of UV radiation (254 nm) of approximately 60 J m(-2) or less when incubated in growth medium, or approximately 15 J m(-2) or less when incubated in buffer. The polA1 strain repaired the incision breaks completely after incident doses of approximately 12 J m(-2) or less when incubated in growth medium, or after approximately 4 J m(-2) when incubated in buffer. The recA13, recB21, and exrA strains showed essentially complete repair after incident doses of 10 to 15 J m(-2) whether the cells were incubated in buffer or growth medium. These results suggest that the uvr gene-dependent excision repair process may be divided into two branches, one which is dependent on the presence of growth medium and also the rec(+)exr(+) genotype, and a second which can occur in buffer (growth medium-independent) and is largely dependent on DNA polymerase I. The presence of chloramphenicol in the growth medium resulted in an inhibition of the growth medium-dependent repair occurring in wild-type and polA1 cells and had little or no effect on the extent of repair observed in recA56, recB21, or exrA cells. The similarities between the growth medium-dependent and -independent branches of excision repair and two known processes for the repair of X-ray-induced single-strand breaks are discussed.  相似文献   

5.
M. Monk  J. Kinross    C. Town 《Journal of bacteriology》1973,114(3):1014-1017
recA and recB derivatives of a strain of Escherichia coli with a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I (polA12) are inviable at high temperature, but continue to incorporate (3)H-thymine into DNA for extended periods. The DNA made in pulse-chase experiments at high temperature in the polA12 parent and its double-mutant derivatives has been examined by alkaline sucrose gradient sedimentation analysis. The low-molecular-weight DNA fragments made during short pulses were joined at the same rate in each strain. Furthermore, the resulting high-molecular-weight DNA was of the same size in each case and was stable for at least 50 min. It is concluded that the inviability of the double mutants is due neither to a defect in converting low-molecular-weight DNA intermediates to high molecular weight nor to the presence of unrepaired random breaks in their DNA.  相似文献   

6.
The apparent sensitivity of Escherichia coli K12 to mild heat was increased by recA (def), recB and polA, but not by uvrA, uvrB or recF mutations. However, addition of catalase to the rich plating medium used to assess viability restored counts of heat-injured recA, recB and polA strains to wild-type levels. E. coli p3478 polA was sensitized by heat to a concentration of hydrogen peroxide similar to that measured in autoclaved recovery medium. The apparent heat sensitivity of DNA-repair mutants is thus due to heat-induced sensitivity to the low levels of peroxide present in rich recovery media. It is proposed that DNA damage in heated cells could occur indirectly by an oxidative mechanism. The increased peroxide sensitivity of heat-injured cells was not due to a decrease in total catalase activity but may be related specifically to inactivation of the inducible catalase/peroxidase (HPI).  相似文献   

7.
After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), and X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E. coli K-12 linkage map. The radB101 mutation sensitized wildtype cells to gamma and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their gamma-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively gamma-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for gamma- and uv-radiation mutagenesis, it showed only a slight enhancement of gamma- and uv-radiation-induced DNA degradation, and it was approximately 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after gamma irradiation and in postreplication repair after uv irradiation for the following reasons; the radB strain was normal for the host-cell reactivation of gamma- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to gamma and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.  相似文献   

8.
Two mutants of the EcoRI endonuclease (R200K and E144C) predominantly nick only one strand of the DNA substrate. Temperature sensitivity of the mutant enzymes allowed us to study the consequences of inflicting DNA nicks at EcoRI sites in vivo. Expression of the EcoRI endonuclease mutants in the absence of the EcoRI methyltransferase induces the SOS DNA repair response and greatly reduces viability of recA56, recB21 and lexA3 mutant strains of Escherichia coli. In parallel studies, overexpression of the EcoRV endonuclease in cells also expressing the EcoRV methyltransferase was used to introduce nicks at non-cognate EcoRV sites in the bacterial genome. EcoRV overproduction was lethal in recA56 and recB21 mutant strains and moderately toxic in a lexA3 mutant strain. The toxic effect of EcoRV overproduction could be partially alleviated by introduction into the cells of multiple copies of the E. coli DNA ligase gene. These observations suggest that an increased number of DNA nicks can overwhelm the repair capacity of DNA ligase, resulting in the conversion of a proportion of DNA nicks into DNA lesions that require recombination for repair.  相似文献   

9.
The presence of pKM101 or ColIb-P9 plasmids in E. coli leads to the increase in the survival of UV-irradiated cells of wild type and of polAI, recB21 recC22 and dnaGts mutants; it does not change the survival of recA13 and lex3 mutants and does not influence kinetics and efficiency of postreplication repair (PRR) of DNA in cells of all the strains examined (with the exception of PG3 dnaGts mutant whose PRR of DNA in the presence of pKM101 plasmid is somewhat lower). The survival of both plasmid-containing and plasmid-free bacteria treated with chloramphenicol decreases in the same degree, but the survival of chloramphenicol-treated recA13, lex3 recB21 rec C22 mutants does not change. The pKM101 plasmid does not lend the dnaGts mutant a new capacity of repairing postreplication gaps with the participation of inducible component of PRR; the chloramphenicol-sensitive component of PRR is absent in this mutant. Plasmid and plasmid-free E. coli strains of wild type and of the polA1 mutant do not differ by the kinetics and level of inducible chloramphenicol-sensitive component of PRR of DNA.  相似文献   

10.
Escherichia coli strain E247 (polA1 recB21) has reduced colony formation (even at the permissive temperature of 30 degrees C) because of a poor suppressor mutation (sup-126). The colony formation was enhanced in the absence of oxygen about 3-fold at 30 degrees C and 10(6)-fold at 43 degrees C, suggesting that a polA recB strain was inviable due to oxygen toxicity. Colony formation was also increased by incubation in an agar medium containing the reducing agent thioglycolate and incubation in the presence of chloroform-killed Saccharomyces cerevisiae pet+ cells, but not pet cells. Since the E247 strain viability was inversely dependent on the oxygen pressure and since the strain was more sensitive to superoxide radical than either the polA or the recB mutant, it seems likely that the polA and recB genes play a role in repairing DNA damage during respiration.  相似文献   

11.
Wild-type cells and six DNA repair-deficient mutants (lexA, recA, recB, recA, recB, polA1, and uvrA) of Escherichia coli K-12 were treated with near-ultraviolet radiation plus hydrogen peroxide (H2O2). At low H2O2 concentrations (6 X 10(-6) to 6 X 10(-4) M), synergistic killing occurred in all strains except those containing a mutation in recA. This RecA-repairable damage was absent from stationary-phase cells but increased in logarithmic cells as a function of growth rate. At higher H2O2 concentrations (above 6 X 10(-4) M) plus near-ultraviolet radiation, all strains, including those with a mutation in recA, were synergistically killed; thus, at high H2O2 concentrations, the damage was not RecA repairable.  相似文献   

12.
The antitumor agent cis-platinum(II)diamminodichloride (PDD) caused wild-type and recA+ deoxyribonucleic acid (DNA) repair-deficient mutant cells of Escherichia coli K-12 to grow as long, multinucleated filaments. At 5 micrograms/ml, the times required for reduction of viability to 37% for wild-type, polA, recB,C, uvrA, and recA organisms were > 200, 200, 120, 25, and 5 min, respectively. Only recA cells exhibited @reckless" degradation of DNA at this concentration of PDD. As shown by sedimentation in alkaline sucrose gradients, generation of single-strand breaks in DNA of the remaining organisms was a major consequence of growth in PDD. Upon incubation in fresh medium after removal of the compound and storage for 4 h at 4 degrees C, a respective lag of 3, 4, 6, and 9 h occurred before filaments of wild-type, polA, recB,C, and uvrA cells commenced cell division. Maintenance at 4 degrees C, which evidently delayed postshift initiation of chromosome replication, was only essential for fragmentation of uvrA filaments. In all cases, these periods of division delay corresponded to those required for restoration of normal chromosomal molecular weight as determined in alkaline sucrose gradients.  相似文献   

13.
14.
A polA12 recA718 double mutant of Escherichia coli, in which DNA polymerase I is temperature sensitive, was unable to maintain normal DNA synthesis or to form colonies on rich media at 42 degrees C. Overproduction of DnaE protein, the polymerizing alpha subunit of DNA polymerase III, restored bacterial DNA replication and cell viability, as well as the PolI-dependent replication of the plasmid carrying dnaE.  相似文献   

15.
In Vivo Studies of Temperature-Sensitive recB and recC Mutants   总被引:31,自引:23,他引:8       下载免费PDF全文
Some in vivo properties of Escherichia coli K-12 strains carrying recB270 (formerly recBts1) and recC271 (formerly recCts1) mutations have been determined. Single recB270 and recC271 mutants appear normal at 30 C with regard to ultraviolet and mitomycin C sensitivity, recombination proficiency, and viability. At 43 C these strains become sensitive to ultraviolet and mitomycin C, while showing only a slight decrease in recombination proficiency. The viable titers of the single mutants are somewhat reduced at 43 C. Double mutant strains carrying polA1 and recB270 or recC271 are inviable at 43 C. The double mutant strain (recB270 recC271) is sensitive to both UV and mitomycin C at 30 C, but shows only slightly reduced recombination proficiency. At 43 C the strain resembles absolute recB and recC mutants in all respects. In addition, the double mutant strain exhibits a temperature-induced drop in viable titer. The triple mutant polA1 recB270 recC271 is viable at 30 C. Two hypotheses are advanced to explain these results.  相似文献   

16.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

17.
Near-ultraviolet (300 to 400 nm) irradiation of L-tryptophan yielded H2O2 (a toxic photoproduct) that was selectively lethal for rec and polA1 Escherichia coli mutants. H2O2 treatment of cells resulted in the induction of single-strand deoxyribonucleic acid breaks. These breaks were repaired to only a small extent in polA1, recA recB, and recA mutants, but were efficiently repaired in wild-type strains. We conclude that H2O2 deoxyribonucleic acid lesions require both the polA+ and recA+ pathways for repair.  相似文献   

18.
Y. Cao  T. Kogoma 《Genetics》1995,139(4):1483-1494
The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5' -> 3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF(+) is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by δrecA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of δrecA polA25::spc cells to UV damage by ~10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the δrecA polA25::spc mutant to a level that is 7.3% of the recA(+) wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.  相似文献   

19.
The molecular basis for the inviability of dam-3 recA200(Ts) and dam-3 recB270(Ts) cells was studied. The dam-3 recA200(Ts) cells were inviable in yeast extract-nutrient broth or in minimal medium at 42 degrees C. Although the dam-3 recB270(Ts) cells were inviable in yeast extract-nutrient broth at 42 degrees C, they were viable at 42 degrees C in minimal medium, in which the high salt content suppresses the mutant phenotype caused by the recB270(Ts) mutation at 42 degrees C. Under the growth conditions rendering dam rec cells inviable, the cells accumulated double-strand breaks in their DNA. Introduction of a mutL or mutS mutation restored the viability of dam-3 recB270(Ts) cells grown in yeast extract-nutrient broth at 42 degrees C and eliminated the formation of DNA double-strand breaks in these cells. We conclude that the inability to repair DNA double-strand breaks produced by the mismatch repair process accounts for the inviability of the dam recA and dam recB cells.  相似文献   

20.
The ras, polA, exrA, recA, and uvrD3 strains of Escherichia coli K-12 degrade their deoxyribonucleic acid more extensively than wild-type strains after X irradiation. The relationship of the recB-recC nuclease (exonuclease V) to the degradation process in these strains was determined by comparing the degradation response of the original strains with that of strains containing an additional recB21 or recC22 mutation. The initial rate of degradation in ras, polA12, exrA, and recA13 strains after an exposure of 20 to 30 kR was reduced more than 10-fold by the presence of an additional recB21 or recC22 mutation. The extent of degradation in these irradiated strains after 90 to 120 min of incubation was reduced two- to fivefold. In the uvrD3 strain, a recC22 mutation caused a fourfold decrease in initial degradation rate and reduced the extent of degradation after 90 min of incubation by a factor of 1.6. The results are consistent with the statement that the degradation process is normally dependent on exonuclease V activity. However, the observation that 10 to 30% degradation always occurred even in recB or recC strains, which lack this enzyme, suggests that alternative degradation mechanisms exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号