首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
采用不依赖于分离培养的16S rDNA的PCR-DGGE基因指纹技术对我国南海的细薄星芒海绵、皱皮软海绵、贪婪倔海绵、澳大利亚厚皮海绵体内的优势细菌的种群组成进行了比较分析。结果显示:每种海绵体内都含有丰富多样的细菌;通过DGGE指纹图的聚类分析发现来自同一海域的不同海绵的共附生细菌的种群组成具有明显不同,即共附生细菌具海绵宿主特异性;同时也发现有相同的细菌存在于不同的海绵体内。  相似文献   

2.
采用平板涂布法从我国南海三亚周边海域贪婪倔海绵(Dysidea avara)中分离海绵共附生细菌,采用金黄色葡萄球菌、大肠埃希氏菌、荧光假单胞菌、枯草芽孢杆菌、白假丝酵母、宛氏拟青霉、黑曲霉7种指标菌进行抑菌试验筛选抗菌活性菌,同时对于得到的活性菌进行生理生化鉴定。共分离获得个149个细菌菌株,发现20株具有抑制真菌和革兰氏阳性细菌的活性,占细菌总数的13.4%。经过细菌形态观察和生理生化试验,发现此20株活性菌属于革兰氏阳性芽孢杆菌属(Bacillussp.)。  相似文献   

3.
可培养海绵共附生微生物的PKS基因筛选   总被引:1,自引:0,他引:1  
利用PCR技术对21株分离自我国南海澳大利亚厚皮海绵的放线菌及9株分离自贪婪倔海绵的芽孢杆菌进行了聚酮合酶(PKS)基因筛选。从芽孢杆菌C89中获得了一条669bp片段,BLAST比对结果表明该基因对应的氨基酸序列和枯草芽孢杆菌I型聚酮合成酶基因(PKS)KS域的相似性达96%。通过系统发育分析推测芽孢杆菌C89PKS基因属于trans-AT型。首次证明了贪婪倔海绵共附生微生物中存在PKS基因,这为海绵活性物质的微生物来源假说提供了证据;同时也为可以产生聚酮类化合物的微生物筛选以及聚酮类化合物的发酵制备奠定了基础。  相似文献   

4.
贪婪倔海绵中抗菌活性细菌的筛选及初步鉴定   总被引:3,自引:0,他引:3  
采用平板涂布法从我国南海三亚周边海域贪婪倔海绵(Dysidea avara)中分离海绵共附生细菌,采用金黄色葡萄球菌、大肠埃希氏菌、荧光假单胞菌、枯草芽孢杆菌、白假丝酵母、宛氏拟青霉、黑曲霉7种指标菌进行抑菌试验筛选抗菌活性菌,同时对于得到的活性菌进行生理生化鉴定。共分离获得个149个细菌菌株,发现20株具有抑制真菌和革兰氏阳性细菌的活性,占细菌总数的13.4%。经过细菌形态观察和生理生化试验,发现此20株活性菌属于革兰氏阳性芽孢杆菌属(Bacillus sp.)。  相似文献   

5.
黄小芳  陈蕾  张燕英  凌娟  龙丽娟  张偲  董俊德 《生态学报》2014,34(20):5875-5886
对三亚湾鹿回头与西沙石岛的常见鹿角杯形珊瑚(Pocillopora damicornis)的固氮酶nif H基因多样性进行了分析,并对其共附生固氮微生物多样性进行了比较。利用Taq I和HaeⅢ两种限制性内切酶分别对三亚湾珊瑚的粘液(SYN)、组织(SYZ)和西沙珊瑚组织(XSZ)的阳性克隆子进行聚合酶链反应-限制性片段长度多态性(PCR-RFLP)分析,得到了23,25和13个OTUs,文库的覆盖率分别为90.3%,87.5%和94.1%,多样性指数Shannon-Wiener指数(H)分别为2.28,3.02和2.08,Evenness指数(E)分别为0.5,0.65和0.56。研究结果表明:1)3个文库重要组成部分都是绿菌门(Chlorobia)和变形菌门(Proteobacteria)α-亚门、γ-亚门、δ-亚门细菌;2)3个文库绝大部分OTUs的最相似序列来自珊瑚礁、海绵、水体、沉积物等环境中的不可培养细菌,反映鹿角杯形珊瑚组织和粘液可能蕴含着丰富的尚未被培养的固氮菌资源;3)发现了两大重要的类群——分别与绿菌门和脱硫弧菌属(Desulfovibrio)细菌序列最相似的类群,它们通过为珊瑚共生体提供有机氮源参与到珊瑚白化的调节或恢复过程中,在珊瑚共生体营养物质的循环中充当重要角色;4)从多样性指数分析可以看出,SYZ的固氮微生物多样性高于SYN,SYZ的固氮微生物多样性高于XSZ,反映了鹿角杯形珊瑚生活的地理位置不同,固氮菌共附生的生态位不同(如珊瑚粘液、组织等不同部位),都将导致珊瑚共附生固氮菌多样性的差异。  相似文献   

6.
【背景】海星作为海洋生物中的一类比较高级的棘皮类动物,其体内蕴藏着丰富且具有生物活性的共附生微生物资源。【目的】分析湛江硇洲岛海星中共附生微生物的多样性。【方法】采用IlluminaMiSeq高通量测序技术分别对硇洲岛海星进行共附生细菌16SrRNA基因V3-V4区和共附生真菌18S rRNA基因ITS1-ITS2区的测序,并根据测序结果进行OTU聚类分析、α多样性分析及物种分类分析等。【结果】高通量测序获得细菌和真菌Filtered的数目分别为61992和71196个,OTU数目分别为2384和529个。经物种分类分析,共附生细菌主要为变形菌门(Proteobacteria),其平均相对含量高达77.37%;其次是厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)和梭杆菌门(Fusobacteria);其中优势细菌属为嗜冷杆菌属(Psychrobacter)和乳球菌属(Lactococcus)。共附生真菌主要为子囊菌门(Ascomycota),其相对含量高达92.33%;其次是霉菌门(Fungi)、担子菌门(Basidiomycota)、被孢菌门(Mortierellomycota)和罗兹菌门(Rozellomycota);优势真菌属以毕赤酵母属(Pichia)为主,未经分类的(unclassified)假丝酵母属(Candida)次之;【结论】硇洲岛海星体内蕴藏着丰富的共附生微生物资源,该研究为今后从事海星微生物资源持续开发和挖掘生物活性物质的研究提供一定的参考依据。  相似文献   

7.
郭逍宇  宫辉力  赵文吉 《微生物学报》2010,50(11):1519-1524
【目的】为了了解再生水灌溉对草坪根际可培养细菌群落组成的影响,【方法】采用稀释平板法,对北京市陶然亭公园内再生水灌区及其对照自来水灌区草坪根际细菌进行了分离,并对其16S rDNA序列进行了分析。【结果】16S rDNA序列分析表明自来水样品分离得到的菌落分属于15个属的20个种,而再生水样品分离得到的菌落分属于18个属的24个种。自来水和再生水灌区草坪根际细菌主要包括变形菌门α亚群(Alphaproteobacteria,分别为9.7%和13.4%)、变形菌门β亚群(Betaproteobacteria,分别为8.1%和12.3%)、变形菌门γ亚群(Gammaproteobacteria,分别为17.9%和42.0%)、拟杆菌门(Bacteroidetes,分别为13.0%和2.9%)、厚壁菌门(Firmicutes,分别为23.6%和10.1%)和放线菌门(Actinobacteria,分别为27.6%和19.6%)其中,芽孢杆菌属(Bacillus sp.)是自来水灌区草坪根际优势菌属(23.6%),而不动杆菌属(Acinetobacter sp.)是再生水灌区根际优势菌属(17.4%)。从不同类群优势菌属看,除变形菌门γ亚群受再生水影响优势菌属在两灌区表现出一定的差异外,其余各亚群优势菌属均未受再生水影响,其中,不动杆菌属是再生水灌区变形菌门γ亚群的优势菌属(41.3%),肠杆菌属(Enterobacter sp.)是自来水灌区变形菌门γ亚群的优势菌属(45.4%)。【结论】这表明,再生水灌溉未改变细菌群落组成类型,但改变了不同类型多度分布状况。具体表现为优势种多度值增加及部分非优势种有无。再生水灌区特有机会性致病菌、植物致病菌和重金属耐性细菌的出现表明再生水灌溉中病原微生物及重金属的控制工作还有待于进一步严格。  相似文献   

8.
王冉  于富强 《微生物学通报》2018,45(5):1112-1119
【背景】微生物在菌根真菌的孢子萌发、菌丝体生长、菌根形成以及子实体发育等过程中起到一定作用。【目的】对采自云南省昆明市嵩明县和楚雄彝族自治州禄丰县的8个干巴菌子实体内的微生物进行分离培养鉴定,为后期研究微生物与干巴菌之间的相互作用奠定基础。【方法】采用传统平板分离法从干巴菌子实体内分离获得微生物群落,t检验分析不同地区采集的干巴菌子实体内微生物菌落总数的差异,16S r RNA基因和ITS序列进行系统发育树构建和微生物多样性分析。【结果】采自嵩明县和禄丰县的8个干巴菌子实体内共分离获得282株可培养的细菌,两个地区的细菌菌落总数无显著差异(P=0.22)。所有细菌分属2门12属15种。其中80%的细菌属于变形菌门,且以γ-变形菌为优势菌群,假单胞菌属(Pseudomonas)为优势菌属。其余20%的细菌属于拟杆菌门。从干巴菌子实体中分离获得114株真菌,两个地区的真菌菌落总数无显著差异(P=0.65)。所有真菌分属2门10属10种。其中62%的真菌属于子囊菌门(Ascomycota),并以分离自禄丰县干巴菌子实体内的Lophiostoma为优势属。38%的真菌属于担子菌门(Basidiomycota),并以Asterotremella为优势属。【结论】两个不同地区采集的干巴菌子实体内细菌和真菌在菌落总数上无显著差异。所有细菌都以γ-变形菌为优势菌群,假单胞菌属为优势菌属。嵩明干巴菌子实体内真菌以担子菌门为优势菌群,Asterotremella为优势属。而禄丰干巴菌子实体内真菌则以子囊菌门为优势菌群,Lophiostoma为优势属。  相似文献   

9.
惠兰(Cymbidium faberi)是中国兰属代表种之一,具有很高的观赏价值和经济价值,对其内生细菌进行研究不仅可以丰富植物内生细菌资源,还可以为探讨兰花与微生物之间的相互作用关系提供基础数据。本研究采用分离培养方法及16S r RNA基因序列测定对天目山野生蕙兰、在温室培养1年后的蕙兰根内生细菌遗传多样性进行了研究。结果表明:从野生蕙兰根内分离得到的97株细菌分属于变形菌门的α-变形菌纲、β-变形菌纲、γ-变形菌纲及厚壁菌门的13个属,其最优势类群为γ-变形菌纲(86.60%),Lelliottia(26.80%)为最优势菌属。从温室盆栽蕙兰根内分离得到的52株细菌分属于变形菌门的α-变形菌纲、β-变形菌纲、γ-变形菌纲及放线菌门的9个属,优势类群为β-变形菌纲(48.08%),优势菌属为草螺菌属(Herbaspirillum)(34.62%),其中菌株eh R17为潜在的新种。这些结果表明天目山野生蕙兰可培养根内生细菌多样性较其在温室培养1年后更为丰富,同时也说明植物内生细菌的群落结构与生长环境密切相关。  相似文献   

10.
为了解不同土壤类型花生根际土壤细菌菌群多样性差异与产量的关系,明确不同土壤类型花生生产特性的区域优势,以6个花生主产区代表性土壤为研究对象,采用盆栽实验利用高通量测序技术研究不同土类花生根际土与非根际土细菌群落结构和变化特征。对6个土壤样品细菌菌群丰富度和多样性分析显示,湖南邵阳红壤细菌丰富度和多样性均较低,河北滦县褐土细菌丰富度和多样性均较高。放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)及芽单胞菌门(Gemmatimonadetes)等为共有优势菌门,但在不同土壤类型样本中的菌群丰度存在明显差异,其中湖南邵阳红壤中绿弯菌门优势最明显,其他土壤类型放线菌门和变形菌门优势较明显。根际土与非根际土细菌门丰度间有差异,湖南邵阳红壤根际土与非根际土各细菌门(包括放线菌门、变形菌门、绿弯菌门、酸杆菌门、芽单胞菌门以及厚壁菌门)丰度变化程度较其它地区大。冗余分析表明,土壤酸碱度(pH)、有机质(ORM)、碱解氮(N),速效磷(P)和速效钾(K)等土壤理化因子对细菌菌群组成和物种丰度均有...  相似文献   

11.
Culture-independent 16S rDNA-DGGE fingerprinting and phylogenetic analysis were used to reveal the community structure and diversity of the predominant bacteria associated with the four sponges Stelletta tenui, Halichrondria, Dysidea avara, and Craniella australiensis from the South China Sea for the first time. Sponge total community DNA extracted with a direct grinding disruption based method was used successfully after series dilution for 16S rDNA PCR amplification, which simplifies the current procedure and results in good DGGE banding profiles. 16S rDNA-V3 fragments from 42 individual DGGE bands were sequenced and the detailed corresponding bacteria were found in sponges for the fist time based on BLAST results. The sponge-associated bacteria are sponge host-specific because each of the tested four sponges from the same geographical location has different predominant bacterial diversity. Proteobacteria, e.g. α, β and γ subdivisions, make up the majority of the predominant bacteria in sponges and are perhaps in close symbiotic relationship with sponges. Though similar bacteria with close phylogenetic relationships were found among different sponges, the sponge-associated predominant bacterial community structures differ. Sponge C. australiensis has the greatest bacterial diversity, with the four bacteria phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, followed by the sponge D. avara with the two phyla Proteobacteria and Bacteroidetes, and the sponges S. tenui and Halichrondria with the phylum Proteobacteria. DGGE fingerprint-based analysis should ideally be integrated with band cloning and sequencing, phylogenetic analysis and molecular techniques to obtain precise results in terms of the microbial community and diversity.  相似文献   

12.
Bacterial communities associated with the surfaces of several Mediterranean sponge species (Agelas oroides, Chondrosia reniformis, Petrosia ficiformis, Geodia sp., Tethya sp., Axinella polypoides, Dysidea avara, and Oscarella lobularis) were compared to those associated with the mesohyl of sponges and other animate or inanimate reference surfaces as well as with those from bulk seawater. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified bacterial 16S ribosomal RNA genes obtained from the surfaces and tissues of these sponges demonstrated that the bacterial communities were generally different from each other. The bacterial communities from sponges were different from those on reference surfaces or from bulk seawater. Additionally, clear distinctions in 16S rDNA fingerprint patterns between the bacterial communities from mesohyl samples of "high-microbial abundance (HMA) sponges" and "low-microbial abundance sponges" were revealed by DGGE and cluster analysis. A dominant occurrence of particularly GC-rich 16S ribosomal DNA (rDNA) fragments was found only in the DGGE banding pattern obtained from the mesohyl of HMA sponges. Furthermore, sequencing analysis of 16S rDNA fragments obtained from mesohyl samples of HMA sponges revealed a dominant occurrence of sponge-associated bacteria. The bacterial communities within the mesohyl of HMA sponges showed a close relationship to each other and seem to be sponge-specific.  相似文献   

13.
Li Z  He L  Miao X 《Current microbiology》2007,55(6):465-472
The cultivable bacterial communities associated with four South China Sea sponges—Stelletta tenuis, Halichondria rugosa, Dysidea avara, and Craniella australiensis in mixed cultures—were investigated by microbial community DNA-based DGGE fingerprinting and 16S rDNA phylogenetic analysis. Diverse bacteria such as α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes were cultured, some of which were previously uncultivable bacteria, potential novel strains with less than 95% similarity to their closest relatives and sponge symbionts growing only in the medium with the addition of sponge extract. According to 16S rDNA BLAST analysis, most of the bacteria were cultured from sponge for the first time, although similar phyla of bacteria have been previously recognized. The selective pressure of sponge extract on the cultured bacterial species was suggested, although the effect of sponge extract on bacterial community in high nutrient medium is not significant. Although α- and γ-Proteobacteria appeared to form the majority of the dominant cultivable bacterial communities of the four sponges, the composition of the cultivable bacterial community in the mixed culture was different, depending on the medium and sponge species. Greater bacterial diversity was observed in media C and CS for Stelletta tenuis, in media F and FS for Halichondria rugosa and Craniella australiensis. S. tenuis was found to have the highest cultivable bacterial diversity including α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes, followed by sponge Dysidea avara without δ-Proteobacteria, sponge Halichondria rugosa with only α-, γ-Proteobacteria and Bacteroidetes, and sponge C. australiensis with only α-, γ-Proteobacteria and Firmicutes. Based on this study, by the strategy of mixed cultivation integrated with microbial community DNA-based DGGE fingerprinting and phylogenetic analysis, the cultivable bacterial community of sponge could be revealed effectively.  相似文献   

14.
Culture-independent molecular techniques, 16S rDNA clone library alongside RFLP and phylogenetic analysis, were applied to investigate the bacterial diversity associated with three South China Sea sponges, Stelletta tenui, Halichondria rugosa and Dysidea avara. A wide bacterial diversity was detected according to total genomic DNA-based 16S rDNA clone library, abundant clones with low identify with sequences retrieved from database were found as well as uncultured sponge symbionts. The phylogenetic analysis shows that the bacterial community structure of Stelletta tenui is similar to that of Halichondria rugosa comprising gamma-Proteobacteria and Firmicutes. Whereas, alpha-Proteobacteria, gamma-Protebacteria, Bacteroidetes and uncultured sponge symbionts were found in sponge Dysidea avara, suggesting that Dysidea avara has the highest bacteria diversity among these sponges. A specific sponge–microbe association is suggested based on the difference of bacterial diversity among these three sponges from the same geography location and the observed sponge species-specific bacteria.  相似文献   

15.
Aims:  To obtain bacteria with PKS (polyketide synthase) genes and antimicrobial activity from sponges.
Methods and Results:  Eighteen bacteria with KS (ketosynthase) genes were identified by polymerase chain reaction (PCR) screening of 98 isolates from South China Sea sponges, Stelletta tenuis , Halichondria rugosa , Dysidea avara and Craniella australiensis . 16S rRNA gene-based B last analysis indicated that 15 isolates belonged to the phylum Firmicutes , among which 14 isolates were closely related to genus Bacillus , and 1 to Staphylococcus lentus . Two isolates were identified as actinomycetes, and one as Alcaligenes sp. in the phylum Proteobacteria . The 18 KS domains belong to trans-AT type I PKS and match PKS of marine bacterial symbionts. The 18 bacteria exhibited broad-spectrum antimicrobial activities against fungi, gram-positive and gram-negative bacteria. A 21·8-kb PKS gene cluster fragment containing five modules was isolated from the Staphylococcus lentus isolate A75 by screening of a fosmid library.
Conclusions:  The PKS gene diversity and different antimicrobial spectra indicate the potential of bacteria associated with South China Sea sponges for diverse polyketide production.
Significance and Impact of the Study:  Combined with bioactivity assay the PKS gene-based approach can be applied to efficient screening of strains of pharmaceutical value and the prediction of related compounds.  相似文献   

16.
AIMS: The aim of this study was to investigate the bacterial diversity associated with the sponge Craniella australiensis using a molecular strategy and isolating Actinomycetes with antimicrobial potentials. METHODS AND RESULTS: The bacterial diversity associated with South China Sea sponge C. austrialiensis was assessed using a 16S rDNA clone library alongside restriction fragment length polymorphism and phylogenetic analysis. It was found that the C. austrialiensis-associated bacterial community consisted of alpha, beta and gamma-Proteobacteria, Firmicutes, Bacteroidetes as well as Actinobacterium. Actinomycetes were isolated successfully using seawater medium with sponge extracts. According to the BLAST and phylogenetic analysis based on about 600-bp 16S rDNA sequences, 11 of the representative 23 isolates closely matched the Streptomyces sp. while the remaining 12 matched the Actinomycetales. Twenty Actinomycetes have antimicrobial potentials, of which 15 are found to possess broad-spectrum antimicrobial potentials. CONCLUSIONS: The sponge C. austrialiensis-associated bacterial community is very abundant including Proteobacteria, Firmicutes, Bacteroidetes and Actinobacterium while Actinomycetes is not predominant. Artificial seawater medium with sponge extracts is suitable for Actinomycetes isolation. Most of the isolated C. austrialiensis-associated Actinomycetes have a broad spectrum of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed the diversity of the bacterial community and the isolated Actinomycetes with antimicrobial potentials associated with sponge C. australiensis.  相似文献   

17.
Diverse microbial communities inhabit Antarctic sponges   总被引:9,自引:1,他引:8  
Genetic techniques were employed to investigate the archaeal, bacterial and eukaryotic communities associated with the Antarctic sponges Kirkpatrickia varialosa, Latrunculia apicalis, Homaxinella balfourensis, Mycale acerata and Sphaerotylus antarcticus. The phylogenetic affiliation of sponge-derived bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Denaturing gradient gel electrophoresis (DGGE) was used to determine the stability of bacterial associations within each sponge species and across spatial scales. Of the 150 archaeal clones from L. apicalis, K. varialosa and M. acerata screened by restriction fragment length polymorphism (RFLP) analysis, four unique operational taxonomic units (OTUs) were observed and all clustered closely together within the Crenarchaeota. Of the 250 sponge-derived bacterial clones screened by RFLP analysis, 61 were unique OTUs that were not detected during examination of 160 seawater-derived clones. Rarefaction analysis indicated that the clone libraries represented between 44 and 83% of the total estimated diversity. Phylogenetic analysis of sequence data revealed that the bacterial communities present in Antarctic sponges primarily clustered within the Gamma and Alpha proteobacteria and the Cytophaga/Flavobacterium of Bacteroidetes group. Bacterial DGGE analysis for replicate sponge and seawater samples at each Antarctic site revealed that bacterial communities were consistently detected within a particular species regardless of the collection site, with six bacterial bands exclusively associated with a single sponge species. Phylogenetic analysis of sequence data from eukaryotic DGGE analysis revealed that the communities present in Antarctic sponges fell into diatom and dinoflagellate clusters with many sequences having no known close relatives. In addition, seven eukaryotic sequences that were not detected in seawater samples or other sponge species were observed in K. varialosa.  相似文献   

18.
Marine sponges harbor dense microbial communities of exceptionally high diversity. Despite the complexity of sponge microbiota, microbial communities in different sponges seem to be remarkably similar. In this study, we used a subset of a previously established 454 amplicon pyrosequencing dataset (Schmitt and Taylor, unpublished data). Five Mediterranean sponges were chosen including the model sponge Aplysina aerophoba to determine the extent of uniformity by defining (i) the core microbial community, consisting of bacteria found in all sponges, (ii) the variable microbial community, consisting of bacteria found in 2–4 sponges, and (iii) the species-specific community, consisting of bacteria found in only one sponge. Using the enormous sequencing depth of pyrosequencing the diversity in each of the five sponges was extended to up to 15 different bacterial phyla per sponge with Proteobacteria and Chloroflexi being most diverse in each of the five sponges. Similarity comparison of bacteria on phylum and phylotype level revealed most similar communities in A. aerophoba and A. cavernicola and the most dissimilar community in Pseudocorticium jarrei. A surprising minimal core bacterial community was found when distribution of 97% operational taxonomic units (OTUs) was analyzed. Core, variable, and species-specific communities were comprised of 2, 26, and 72% of all OTUs, respectively. This indicates that each sponge contains a large set of unique bacteria and shares only few bacteria with other sponges. However, host species-specific bacteria are probably still closely related to each other explaining the observed similarity among bacterial communities in sponges.  相似文献   

19.
Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号