首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In flowering plants, the evolution of dimorphic breeding systems from monomorphic ancestors can be associated with dry environments. One hypothesis to explain this pattern is that seed fertility of hermaphrodites decreases more than seed fertility of females under dry conditions, so that females have greater relative fitness. This could occur if seed production of hermaphrodites is more resource-limited than that of females, or shifts in pollination increase levels of selfing and inbreeding depression in hermaphrodites. Here we assess the role of dry environments in promoting a female fitness advantage in Wurmbea biglandulosa by focusing on monomorphic and dimorphic populations that occur along a longitudinal gradient of decreasing rainfall. Dimorphic populations occurred in sites with higher temperatures, lower rainfall and lower soil moisture. Overall, females had greater seed fertility than did hermaphrodites from monomorphic populations, which in turn had greater seed fertility than hermaphrodites from dimorphic populations. Ovuliferous flower and ovule production by the three gender morphs and seed fertility of females and hermaphrodites in monomorphic populations did not vary with soil moisture. By contrast, seed fertility of hermaphrodites in dimorphic populations was positively related to soil moisture. Accordingly, female frequency was higher in those sites where hermaphrodites produced relatively fewer seeds. Taken together our results indicate that dry environments promote the establishment of females by decreasing the relative seed fitness of hermaphrodites. Moreover, because seed fertility of hermaphrodites in monomorphic populations did not vary with soil moisture, resource limitation of female function may play only a minor role in the establishment of females. Other factors such as shifts in pollination and mating patterns of hermaphrodites could be involved. Key words:breeding system evolution, environmental stress, gender dimorphism, gynodioecy, sex ratio variationCo-ordinating editor: J.F. Stuefer  相似文献   

2.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

3.
Seed production and patterns of sex allocation were studied in female and hermaphroditic plants in two gynodioecious populations of Geranium sylvaticum (Geraniaceae). Females produced more flower buds and seeds than hermaphrodites in one of the two study populations. The other female traits measured (pistil biomass, seed number per fruit, individual seed mass) did not differ between the gender morphs. The relative seed fitness of hermaphrodites differed between the study populations, with hermaphrodites gaining less of their fitness through female function in the population with a high frequency of females. However, the amount and size of pollen produced by hermaphrodites did not differ between populations. The number of flower buds was positively correlated with seed production in females, whereas in hermaphrodites a positive correlation between number of buds and seed production was found in only one of the two study populations. These results suggest that fitness gain through female function is labile in hermaphrodites of this species, and is probably affected by environmental factors such as the sex ratio of the population.  相似文献   

4.
Fine scale spatial structure (FSSS) of cytoplasmic genes in plants is thought to be generated via founder events and can be amplified when seeds germinate close to their mother. In gynodioecious species these processes are expected to generate FSSS in sex ratio because maternally inherited cytoplasmic male sterility genes partially influence sex expression. Here we document a striking example of FSSS in both mitochondrial genetic markers and sex in roadside populations of Silene vulgaris. We show that in one population FSSS of sexes influences relative fruit production of females compared to hermaphrodites. Furthermore, FSSS in sex ratio is expected to persist into future generations because offspring sex ratios from females are female-biased whereas offspring sex ratios from hermaphrodites are hermaphrodite-biased. Earlier studies indicated that pollen limitation is the most likely mechanism underlying negative frequency dependent fitness of females. Our results support the theoretical predictions that FSSS in sex ratio can reduce female fitness by decreasing the frequency at which females experience hermaphrodites. We argue that the influence of FSSS on female fitness is complementary to the influence of larger scale population structure on female fitness, and that population structure at both scales will act to decrease female frequencies in gynodioecious species. Better comprehension of the spatial structure of genders and genes controlling sex expression at a local scale is required for future progress toward understanding sex ratio evolution in gynodioecious plants.  相似文献   

5.
Resources, sex ratio, and seed production by hermaphrodites covary among natural populations of many gynodioecious plant species, such that they are functionally "more dioecious" as resources become more limiting. Strong correlations among these three factors confound our understanding of their relative roles in maintaining polymorphic sexual systems. We manipulated resource availability and sex ratio and measured their effects on relative fertility and phenotypic selection through the maternal fitness of females and hermaphrodites of Fragaria virginiana. Two results were particularly surprising. First, hermaphrodites showed little variability in fecundity across resource treatments and showed strong positive and context-dependent selection for fruit set. This suggests that variation in hermaphrodite seed production along resource gradients in nature may result from adaptation rather than plasticity. Second, although females increased their fecundity with higher resources, their fertility was unaffected by sex ratio, which is predicted to mediate pollen limitation of females in natural populations where they are common. Selection on petal size of females was also weak, indicating a minimal effect of pollinator attraction on variation in the fertility of female plants. Hence, we found no mechanistic explanation for the complete absence of high-resource high female populations in nature. Despite strong selection for increased fruit set of hermaphrodites, both the strength of selection and its contribution to the maintenance of gynodioecy are severely reduced under conditions where females have high relative fecundity (i.e., low resources and high-female sex ratios). High relative fertility plus high female frequency means that the evolution of phenotypic traits in hermaphrodites (i.e., response to selection via seed function) should be manifested through females because most hermaphrodites will have female mothers. Fruit set was never under strong selection in females; hence, selection to increase fruit set hermaphrodites will be less effective in maintaining their fruiting ability in natural populations with low resources and high female frequency. In sum, both sex ratio and resource availability influence trait evolution indirectly-through their effects on relative fertility of the sexes and patterns of selection. Sex ratio did not impose strong pollen limitation on females but did directly moderate the outcome of natural selection by biasing the maternal sex of the next generation. This direct effect of sex ratio on the manifestation of natural selection is expected to have far greater impact on the evolution of traits, such as seed-producing ability in hermaphrodites and the maintenance of sexual polymorphisms in nature, compared to indirect effects of sex ratio on relative fertility of the sexes.  相似文献   

6.
Separate sexes can evolve under nuclear inheritance when unisexuals have more than twice the reproductive fitness of hermaphrodites through one sex function (e.g., when females have more than twice the seed fertility of hermaphrodites). Because separate sexes are thought to evolve most commonly via a gynodioecious intermediate (i.e., populations in which females and hermaphrodites cooccur), the conditions under which females can become established in populations of hermaphrodites are of considerable interest. It has been proposed that resource-poor conditions could promote the establishment of females if hermaphrodites are plastic in their sex allocation and allocate fewer resources to seed production under these conditions. If this occurs, the seed fertility of females could exceed the doubling required for the evolution of unisexuality under low-, but not high-resource conditions (the sex-differential plasticity hypothesis). We tested this hypothesis using replicate experimental arrays of the aquatic herb Sagittaria latifolia grown under two fertilizer treatments. The results supported the sex-differential plasticity hypothesis, with females having more than twice the seed fertility of hermaphrodites under low-, but not high-fertilizer conditions. Our findings are consistent with the idea that separate sexes are more likely to evolve under unfavorable conditions.  相似文献   

7.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

8.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

9.
We determined female frequency of 23 populations of the gynodioecious Geranium sylvaticum (Geraniaceae) in Finland. We compared our results to previous results on this species from the 1960s in order to reveal putative changes in female frequencies. Because females may be maintained in gynodioecious populations if their seed production or offspring quality is higher than that of hermaphrodites, we explored reproductive success of females and hermaphrodites in detail in 11 populations for two consecutive years. Female frequencies varied from 0.4 to 27.2%; this variation is similar to that observed in the 1960s. Contrary to previous results that indicated lower seed production in females, females produced 1.2 and 1.7 times more seeds per flower than hermaphrodites in 2000 and 2001, respectively. Females also had higher fruit set than hermaphrodites. Thus, higher seed production of females partly explains the maintenance of gynodioecy in this species. Furthermore, female frequency correlated negatively with relative seed fitness of hermaphrodites suggesting that relative seed fitness is related to population sex ratio. Female frequency and the distance of the population from the most southern population also tended to correlate positively, suggesting that harsher environmental conditions in the north may benefit female plants. Given the observed yearly variation, our results also highlight the importance of temporal variation for the relative seed fitness of females and hermaphrodites.  相似文献   

10.
Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Theoretical models have shown that if nuclear genes control sex expression, then gynodioecy can evolve only when females have large advantages in one or more fitness components. These female advantages must be large enough that females' expected lifetime production of viable seeds is more than twice that of hermaphrodites. Previous studies have found that cytoplasmic inheritance and/or a large offspring-vigor advantage of females (caused by hermaphrodite self-pollination and inbreeding depression of selfed seeds) account for this breeding system's evolution. This paper reports studies of gynodioecy in Phacelia linearis, an insect-pollinated annual plant in which gender inheritance appears to be nuclear. Twenty-six P. linearis populations surveyed in northern Utah, USA, contain a majority of perfect-flowered hermaphrodites, but most (22) also contain male-sterile individuals (females), at frequencies of up to 0.16. The hermaphrodite selfing rate is low (0.00–0.20 in four populations). Maternal gender does not consistently affect components of offspring vigor, such as seed size, germination rate, seedling survivorship, and vegetative size. Plants of the two genders do not differ in number of seeds per fruit or mean seed mass. Females produce significantly more fruits and seeds than hermaphrodites in natural populations. The ratio of the mean lifetime seed production of females to the mean lifetime seed production of hermaphrodites ranged from 1.31 to 2.52 in six natural populations. Females have greater shoot biomass than hermaphrodites and produce more seeds at any given shoot biomass than hermaphrodites, suggesting that their seed-production advantage arises from gender-specific patterns of resource allocation to growth and reproduction. The gender difference in plant size varies across environments and across genetic backgrounds. In this species nuclear gynodioecy appears to be evolutionarily stable mainly because of resource compensation by females, without a large outcrossing advantage of females.  相似文献   

11.
Theory predicts that the sex ratio of gynodioecious populations (in which hermaphrodites and females coexist) will be affected by the relative female fitness of females and hermaphrodites, and by founder events and genetic drift in small populations. We documented the sex ratio and size of 104 populations of the gynodioecious, perennial herb Plantago maritima in four archipelagos in eastern Sweden and western Finland (from latitude 53 to 64 degrees N). The sex ratio varied significantly both among and within archipelagos (range 0-70% females, median 6.3% females). The frequency of females was highest in the northernmost archipelago and lowest in the southernmost archipelago. As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. The relative fecundity of female plants (mean seed output per female/mean seed output per hermaphrodite) ranged from 0.43 to 2.16 (median 1.01, n = 12 populations). Among the 12 populations sampled for seed production (four in each of three archipelagos), the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites and by stochastic processes in small populations.  相似文献   

12.
In gynodioecious plant species with nuclear‐cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production. In the current study, we measured fruit set and seed production in both females and hermaphrodites and the selfing rate in hermaphrodites in two experimental patches that differed in sex ratios in the gynodioecious plant Silene nutans. We found an impact of plant gender, patch, and their interaction, with females suffering from stronger pollen limitation when locally frequent. In the most pollen‐limited situation, the selfing rate of hermaphrodites increased and provided hermaphrodites with a type of reproductive assurance that is not available to females. By integrating both the beneficial (reproductive assurance) and costly effects (through inbreeding depression) of self‐pollination, we showed that whether females did or did not exhibit higher seed fitness depended on the degree of pollen limitation on seed production.  相似文献   

13.
The spatial distribution of females and hermaphrodites within gynodioecious populations is expected to exert considerable selective pressure on gender fitness through pollen limitation of seed set. If pollen flow is predominantly local, seed set in individual plants may be sensitive to the proximity of pollen donors; pollen limitation of seed set may occur if hermaphrodites are locally rare. Under such circumstances, female fitness will be negatively frequency dependent and hermaphrodite fitness will be positively frequency dependent. Given local seed dispersal, a nonrandom clumped distribution of the genders is expected in gynodioecious populations due to the heritability of gender in gynodioecious species. If gender fitness is frequency dependent, such structure should favor hermaphrodites and select against females. To test this hypothesis, I quantified the distribution of the genders in terms of nearest neighbors and neighborhood sex ratio in two populations of gynodioecious Sidalcea malviflora malviflora. I then measured the effect of neighborhood sex ratio on open-pollinated seed set and pollen limitation in both manipulated and unmanipulated neighborhoods. Results indicate that the genders have a patchy distribution and that both genders are pollen limited and show an increase in seed set with an increase in neighborhood hermaphrodite frequency. The observed population sex structure favors hermaphrodites and disadvantages females. These results highlight the importance that population-level traits can have in determining individual fitness and the evolution of sex ratios in gynodioecious species.  相似文献   

14.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

15.

Background and Aims

Gynodioecy (coexistence of females and hermaphrodites) is a sexual system that occurs in numerous flowering plant lineages. Thus, understanding the features that affect its maintenance has wide importance. Models predict that females must have a seed fitness advantage over hermaphrodites, and this may be achieved via seed quality or quantity. Females in a population of Fragaria vesca subsp. bracteata, a long-lived gynodioecious perennial, do not demonstrate a seed quantity advantage, so this study explored whether females produced better quality seed via maternal sex effects or avoidance of inbreeding depression (IBD).

Methods

Families of selfed and outcrossed seed were created using hermaphrodite mothers and families of outcrossed seed were created using female mothers. The effects of these pollination treatments were assessed under benign conditions early in life and under varied conditions later in life. To test for an effect of maternal sex, fitness components and traits associated with acclimation to variable environments of progeny of outbred hermaphrodites and females were compared. To test for expression of IBD, fitness parameters between inbred and outbred progeny of hermaphrodites were compared.

Key Results

Offspring of females were more likely to germinate in benign conditions and survive in harsh resource environments than outbred progeny of hermaphrodites. IBD was low across most life stages, and both the effect of maternal sex on progeny quality and the expression of IBD depended on both maternal family and resource condition of the progeny.

Conclusions

The effect of maternal sex and IBD on progeny quality depended on resource conditions, maternal lineage and progeny life stage. In conjunction with known lack of differences in seed quantity, the quality advantages and IBD observed here are still unlikely to be sufficient for maintenance of gynodioecy under nuclear inheritance of male sterility.  相似文献   

16.
Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Sex ratio and gender-relative lifetime seed production determine the stability of gynodioecy, and both genetic and ecological factors may influence these parameters. I analyzed the consequences of variation in population sex ratio and site elevation for the relative pollination success of female and hermaphrodite individuals of Daphne laureola in southern Spain, where previous studies failed to detect female fecundity advantages at two mid-elevation sites. Pollination success, estimated as stigmatic pollen loads, number of pollen tubes per style, and percentage of fertilized flowers, was higher for hermaphrodites than females in populations with 20-56% females. Furthermore, female quantitative disadvantage in pollination success increased with elevation, suggesting that the higher availability of pollen due to the increased proportion of hermaphrodites could not mitigate the negative effect that other factors associated with elevation apparently had on pollination. Supplemental hand pollinations showed that female seed production was pollen limited in populations with a proportion of females >50%, although both pollination success and natural fruit set of females in these sites were the highest recorded.  相似文献   

17.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

18.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   

19.
Flowering plants are able to develop gametes throughout their lives. As a consequence, environmental conditions can impact this development and alter a plant's functional gender or the degree to which it achieves fitness through male or female function. Two dimorphic breeding systems are widespread among angiosperm families: gynodioecy (hermaphrodites and females) and dioecy (males and females). Gynodioecy can evolve into dioecy, via loss of female function on the hermaphrodites, or it can remain stable. Here I discuss how developmental plasticity of gender can impact the sex ratio of populations and thereby influence the transition of one breeding system into another. I review studies showing that greater plasticity of fruit production by hermaphrodites as compared with females causes sex ratios among populations to vary in response to environmental conditions, with higher female frequency expected in harsh or low-quality sites. I also review how dioecy may evolve in dry sites to avoid inbreeding and any consequent inbreeding depression. Taken together, these studies show the importance of understanding how ecological development affects functional gender and consequently the evolutionary stability or malleability of dimorphic breeding systems.  相似文献   

20.
According to sex allocation theory, to maintain a mutant male-sterile plant in a population of hermaphrodites such a plant must compensate its loss of fitness caused by inhibition of pollen production with a higher reproductive success through its female function. In the present study of a gynodioecious population of Silene vulgaris (Caryophyllaceae) I show that hermaphrodites not only benefit from outcrossing, in that progeny from outcrossed flowers are more vigorous than those from selfed flowers within an individual plant, but they also suffer heavily from self-pollination between different flowers of the same individuals, which could be demonstrated in experimentally made male-sterile (emasculated) individuals. Seeds from the emasculation period were heavier and germinated better than when the same individual was an intact hermaphrodite. Naturally male-sterile (female) individuals produced more fruits due to flowers staying open longer for pollen to arrive via some vector. However, the higher seed number alone could not provide the fitness advantage needed for females to be maintained in the population, but females also produced heavier seeds as compared to the hermaphrodites. Differences in seed survival and seedling establishment in the field are expected to add the advantages necessary for female plants to be selectively plausible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号