首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of sodium chloride concentrations (6, 16 and 26% (w/v) NaCl) on the survival of Listeria monocytogenes at low temperatures (10°C and under refrigeration, average 2°C) and frozen (- 18°C) was investigated. All salt concentrations tested were ineffective in reducing numbers over 6 h incubation at low temperatures. Over a longer time (33 d) at low temperatures, the organism grew in 6% NaCl, numbers remained the same in 16% NaCl and numbers declined in 26% NaCl. Although L. monocytogenes was destroyed in 26% NaCl, numbers declined too slowly for immersion in cold brine at this concentration to be a useful bacteriocidal treatment. Storage at - 18°C for 33 d caused no significant reduction in numbers at any of the NaCl concentrations tested.  相似文献   

2.
AIMS: The fate of Listeria monocytogenes Scott A, was studied in broth, at different a(w)s (by adding NaCl or KCl from 0.0 to 1.4 mol l(-1)), pHs (from 4.0 to 7.3 by adding lactic acid), and nisin concentrations (from 0 to 100 IU ml(-1)). METHODS AND RESULTS: Increasing salt and nisin concentrations and decreasing pH resulted in lower growth rates and extended lag phases. At pH 4.5 no growth was observed while in presence of nisin and/or 1 mol l(-1) salts of both kinds, L. monocytogenes Scott A was inactivated. Equal-molar concentrations of NaCl or KCl (similar a(w)), exerted similar effects against L. monocytogenes in terms of lag phase duration, growth or death rate. The growth boundaries of L. monocytogenes Scott A at 5 degrees C were also estimated by growth/no growth turbidity data, modeled by logistic polynomial regression. The concordance of logistic models, were 99.6 and 99.8% for NaCl and KCl, respectively. CONCLUSIONS: The growth interfaces derived by both NaCl and KCl models were almost identical. Hence, NaCl can be replaced by KCl without risking the microbiological safety of the product. Increasing nisin concentrations markedly affected the interface resulting in a more inhibitory environment for L. monocytogenes Scott A. Low to medium salt concentrations (0.3-0.7 mol l(-1) of either NaCl or KCl) provided a protective effect against inhibition of L. monocytogenes Scott A by nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Modelling the growth boundaries not only contributes to the development of safer food by providing useful data, but can also be used to study interactions between factors affecting initiation of growth of pathogenic micro-organisms.  相似文献   

3.
Thirty-three strains of Listeria monocytogenes belonging to different serotypes were tested for their sensitivity to curvaticin 13, an antilisterial bacteriocin produced by Lactobacillus curvatus SB13, using the well diffusion method in Institut Pasteur agar plates at 37 degrees C. No relationship between serotype and sensitivity was observed. The sensitivity of this species was strain-dependent and a large variation in tolerance to curvaticin 13 was observed. The combined effects of curvaticin 13 (0-160 AU ml-1), NaCl (0-6% w/v), pH values (5.0-8.2) and incubation time (0-24 h) were investigated on L. monocytogenes ATCC 15313 in trypcase soy-yeast extract broth at 22 degrees C. For this study, two Doehlert matrices were used in order to investigate the main effects of these factors and their different interactions. The results were analysed using the Response Surface Methodology. Curvaticin 13 had a major inhibitory effect and the response was NaCl concentration-, time- and pH-dependent. This inhibitory activity was the same at pH values between 6.6 and 8.2. Curvaticin 13 was bactericidic at acidic pH values, but the surviving cells resumed growth. For a short incubation time (12 h), the effectiveness of curvaticin 13 was maximal in the absence of NaCl. For longer incubation times (12-48 h), with high NaCl (6%) and curvaticin 13 concentrations (160 AU ml-1), the inhibition of L. monocytogenes was greater than that observed with NaCl or curvaticin 13 alone.  相似文献   

4.
AIMS: To investigate the main effects and interactions of different factors : divercin V41 (0-4 ng ml(-1)), NaCl content (0.5-5.5% w v(-1)), phenol (liquid smoke) concentration (0-8 ppm), and pH (5.5-7.5) on Listeria monocytogenes ScottA growth. METHODS AND RESULTS: Experiments were carried out in BHI broth using a central composite design. Divercin V41 (div41), NaCl content and pH were found to be the most influential factors whereas phenol concentration in liquid smoke had no effect on L. monocytogenes ScottA growth in our experimental domain. The combined effects of div41, NaCl content and pH decreased L. monocytogenes ScottA maximum specific growth rate (mu(max)) from 0.34 to 0.01 h(-1) and led to a significant increase in lag time (t(lag)) from 5.5 to 25 h. CONCLUSION: In this study, NaCl, pH and phenol conditions were similar to those currently observed in smoked salmon production. This shows that L. monocytogenes ScottA growth could be efficiently delayed by the use of div41 in addition to the usual technological hurdles. SIGNIFICANCE AND IMPACT OF THE STUDY: In conclusion, the technological hurdles of cold smoked salmon production could be further optimized and combined with the use of div41 or the div41 producer strain to improve the food safety of the product.  相似文献   

5.
In this paper, the predictive microbiology approach has been generalized to the study of growth, survival and death of Listeria monocytogenes. As this micro-organism is involved in food poisoning, its growth, survival and death were studied as functions of low temperatures, NaCl and phenol compounds, in a synthetic medium, by a factorially designed experiment. A significant inactivation of L. monocytogenes was obtained with 20 ppm of phenol and 4% (w/v) NaCl at temperatures from 4 to 12 degrees C. An empirical model is proposed to describe, in a single step, the biomass profile vs studied factors. Thereby, the influence of temperature, NaCl and phenol concentration on L. monocytogenes biomass quantity (0.5-8 log cfu ml(-1)) are presented as a function of storage duration. The comparisons of the proposed model with existing models (Gompertz for growth, vitalistic for survival and death) were performed. The use of a single equation allows the prediction of contamination levels in all experimental conditions without knowledge a priori. The model offers considerable prospects for its use in food microbiology.  相似文献   

6.
The ability of five strains of Listeria monocytogenes to initiate growth at five different temperatures in brain heart infusion (BHI) broth adjusted to various water activity ( a w) values with either sodium chloride (NaCl), sucrose or glycerol was investigated. Glycerol was the least toxic of the three solutes studied, with three of five strains of L. monocytogenes capable of growing in BHI broth adjusted with glycerol to an a w value of 0.90 at 30 C, compared to a w minima of 0.93 and 0.92 in broth adjusted with sucrose and sodium chloride, respectively. The minimum a w value required for growth generally increased as the incubation temperature decreased. Listeria monocytogenes appeared to tolerate glycerol and NaCl best when growing at 30 and 15°C, respectively, while for sucrose, temperature did not appear to influence growth of the organism. Listeria monocytogenes is one of the few food-borne pathogens that can grow at an a w value below 0.93.  相似文献   

7.
Listeria monocytogenes is an opportunistic bacterial pathogen of man and animals that has the capacity to survive under extreme environmental conditions. While our knowledge on L. monocytogenes and its ability to sustain within wide pH and temperature ranges and salt concentrations has been largely built on the virulent strains of this species, relatively little is known about avirulent strains in this regard. In this study, we extend our analysis on avirulent L. monocytogenes strains. By subjecting three virulent (EGD, 874 and ATCC 19196) and three avirulent (ATCC 19114, HCC23 and HCC25) strains to various pH and salt concentrations, it was found that L. monocytogenes recovered well after treatment with 100 mM Tris at pH 12.0, and to a lesser extent at pH 3.0. Interestingly, avirulent L. monocytogenes strains showed a somewhat higher tolerance to alkali than virulent strains. This unique feature of avirulent L. monocytogenes strains may potentially be exploited for the development of a rapid technique for differentiation between avirulent and virulent strains. Furthermore, all L. monocytogenes strains tested were resistant to saturated NaCl (about 7 M, or 40% w/v) for a long period of time (20 h and possibly longer). Together, these results highlight that acid, alkali, and/or salt treatments commonly used in food product processing may not be sufficient to eliminate L. monocytogenes, and therefore stringent quality control measures at the beginning and end of the food manufacturing process is essential to ensure that such food products are free of listerial contamination.  相似文献   

8.
AIMS: To determine the role played by previous growth in the presence of osmolytes on the subsequent survival and sub-lethal injury of L. monocytogenes during long-term chilled storage in a model buffer system. METHODS AND RESULTS: Four Listeria monocytogenes strains were grown separately to stationary phase in Listeria minimal medium (DM) alone or in DM with 4% NaCl alone, or both these media supplemented with 1 mM L-carnitine and/or 1 mM glycine betaine. Cells were resuspended in phosphate buffered saline (pH 5.5) and stored for four weeks at 4 degrees C. Initially, and at weekly intervals, samples were plated on both Tryptic Soy Agar and Tryptic Soy Agar with 4% NaCl to determine total numbers and degree of sub-lethal injury in the populations. The numbers of cells within all strains after growth to stationary phase, except one which increased ( approximately 2 log cfu ml-1, P < 0.05) in the presence of NaCl, were not influenced significantly by previous growth conditions (P > 0.05). During subsequent chilled storage, however, numbers of all strains grown in the presence of NaCl remained constant while those grown in its absence decreased. The rate and magnitude of the decrease in cell numbers was strain dependent. The initial percentage of sub-lethal injury increased significantly in all strains when grown previously in the presence of L-carnitine (P < 0.05). During subsequent chilled storage sub-lethal injury increased for all strains in a manner that was strain dependent, but not related to the previous growth conditions. CONCLUSION: Previous growth in the presence of osmolytes of NaCl, but not osmolytes alone, increases the subsequent survival, but not percentage sub-lethal injury, of L. monocytogenes during subsequent chilled storage in buffer. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that risks associated with L. monocytogenes in chilled food may be influenced by the individual life histories of the cells.  相似文献   

9.
A sublethal dose of ethanol (5%, vol/vol), acid (HCl, pH 4.5 to 5.0), H2O2 (500 ppm), or NaCl (7%, wt/vol) was added to a Listeria monocytogenes culture at the exponential phase, and the cells were allowed to grow for 1 h. Exponential-phase cells also were heat shocked at 45 degrees C for 1 h. The stress-adapted cells were then subjected to the following factors at the indicated lethal levels--NaCl (25%, wt/vol), ethanol (17.5%, vol/vol), hydrogen peroxide (0.1%, wt/vol), acid (pH 3.5), and starvation on 0.1 M phosphate buffer at pH 7.0 (up to 300 h). Viable counts of the pathogen, after the treatment, were determined on Trypticase soy agar-yeast extract, and survivor plots were constructed. The area (h.log10 CFU/ml) between the control and treatment curves was calculated to represent the protective effect resulting from adaptation to the sublethal stress factor. Adaptation to pH 4.5 to 5.0 or 5% ethanol significantly (P < 0.05) increased the resistance of L. monocytogenes to lethal doses of acid, ethanol, and H2O2. Adaptation to ethanol significantly (P < 0.05) increased the resistance to 25% NaCl. When L. monocytogenes was adapted to 500 ppm of H2O2, 7% NaCl, or heat, resistance of the pathogen to 1% hydrogen peroxide increased significantly (P < 0.05). Heat shock significantly (P < 0.05) increased the resistance to ethanol and NaCl. Therefore, the occurrence of stress protection after adaptation of L. monocytogenes to environmental stresses depends on the type of stress encountered and the lethal factor applied. This "stress hardening" should be considered when current food processing technologies are modified or new ones are developed.  相似文献   

10.
AIMS: To study the expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies (MAbs) C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. METHODS AND RESULTS: The reaction patterns of antibodies to L. monocytogenes held in stressful environments for a short duration (3 h) or grown for extended periods (16-72 h) were investigated. During both short or prolonged exposure to stress environments of high temperature (45 degrees C) and NaCl (>1.5%, w/v), reactions of whole cells of L. monocytogenes to antibodies were severely affected as determined by ELISA and by the reduced expression of the antibody-reactive 66 kDa antigen in the Western blot assay. Conversely, cold (4-15 degrees C) or acid (pH 2-3) stress environments had very little effect on antigen expression or antibody reaction. Additionally, heat-killed cells showed reduced reactions to these antibodies when compared with unheated cells. Artificially created stress environments in hotdog slurry also affected the antigen expression in L. monocytogenes. Immunoelectron microscopy revealed that the antibody-reactive antigens were uniformly present on the surface of the cells. Morphological characteristics following growth in stressed environments revealed that heat stress at 45 degrees C caused L. monocytogenes cells to be elongated and to form clumps; whereas, osmotic stress (5.5% NaCl, w/v) caused filamentous appearance with multiple septa along the length of the cell. CONCLUSIONS: These results indicated that MAb C11E9 or EM-7G1 could detect L. monocytogenes from cold or acid-stress environments; however, they may show weaker reactions with heat or osmotically stressed cells or cells grown at 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria in food are routinely subjected to various stresses, induced by cold, heat, salt or acid during processing and storage. Whether stresses would modify the expression of cellular antigens of L. monocytogenes is of a great concern for immunodetections in food products.  相似文献   

11.
Several strains of Listeria species formed petite-sized colonies from parent stock cultures when grown on agar media containing 0.2-1% (w/v) esculin. This was observed in Listeria monocytogenes (7/22 strains), L. innocua (1/3), L. grayi (1/1), L. seeligeri (1/3), and L. welshimeri (1/1), but not in L. ivanovii (0/1) and L. murrayi (0/1). This phenomenon was only observed on agar media that contained esculin. All petite isolates had biotyping profiles identical to their larger, normal-sized counterpart isolates. Normal and petite-sized isolates from two L. monocytogenes strains, Scott A and V7, were pathogenic to immunosuppressed white mice. On media containing 0.5% (w/v) esculin + ferric iron, Listeria cultures produced colony diameters intermediate in size between those of normal and petite cultures. When pregrown in glucose broth, all petite isolates demonstrated visible beta-glucosidase (esculinase) activity within 5 min, while the normal-sized isolates showed beta-glucosidase activity only after at least 20-70 min. This evidence suggests that cells forming petite colonies are beta-glucosidase constitutive variants within the parent population, while cells that form normal-sized colonies are inducible for beta-glucosidase (esculinase) activity. A possible role for the esculin hydrolysis product, esculetin, in causing petite colony formation is discussed.  相似文献   

12.
Green olives of the Tunisian variety "Meski" were treated according to a Spanish-style green olive preservation process by using an alkaline treatment (1.5, 2 and 2.5% (w/v) NaOH) to eliminate bitterness, combined with different brine concentrations (6, 9 and 12% (w/v) NaCl). A spontaneous fermentation by the environmental microflora took place. Results showed that 2% NaOH solution and 9% sodium chloride brine was an optimal combination inducing the best growth of Lactobacillus species (10(8) CFU/ml) and acidity of 0.726 g lactic acid/100 ml brine. In all trials and independently of the treatment, Lb. plantarum was the most dominant strain of Lactobacillus. Moreover, pretreatment with lye and lactic fermentation of olives contributed to coliform elimination.  相似文献   

13.
Exudative fluids were collected from packages of five brands of all-beef wieners and inoculated to contain 10(4) to 10(5) CFU of a three-strain (Scott A, V7, and 101M) mixture of Listeria monocytogenes per ml. Listeriae were inactivated (decrease of 0.61 to 3.8 log10 CFU/ml) in all five exudates held at 4 degrees C for 29 days. L. monocytogenes grew (increase of 1.7 to 3.6 log10 CFU/ml) in two of five exudates held at 25 degrees C for 6 days. Exudate was inoculated with a derivative of Pediococcus acidilactici H (designated JBL1095) or treated with pediocin AcH (a bacteriocin) as a novel approach to control the growth of L. monocytogenes in wiener exudates. Initially, pediocin AcH caused rapid death (decrease of 0.74 log10 CFU/ml in 2 h) of L. monocytogenes in exudate held at 4 degrees C, but thereafter the inactivation was similar to that in control exudate (L. monocytogenes only) or exudate containing L. monocytogenes plus JBL1095. At 25 degrees C, L. monocytogenes grew in the presence of JBL1095 during the first 64 h of incubation, but thereafter the numbers of the pathogen decreased appreciably (5.84 log10 CFU/ml in 3 days). In the presence of pediocin AcH, there was a gradual decrease in numbers of L. monocytogenes throughout the storage period at 25 degrees C. These data indicate that added biopreservatives can potentiate and amplify the intrinsic listeriostatic or listericidal activity of wiener exudate.  相似文献   

14.
Exudative fluids were collected from packages of five brands of all-beef wieners and inoculated to contain 10(4) to 10(5) CFU of a three-strain (Scott A, V7, and 101M) mixture of Listeria monocytogenes per ml. Listeriae were inactivated (decrease of 0.61 to 3.8 log10 CFU/ml) in all five exudates held at 4 degrees C for 29 days. L. monocytogenes grew (increase of 1.7 to 3.6 log10 CFU/ml) in two of five exudates held at 25 degrees C for 6 days. Exudate was inoculated with a derivative of Pediococcus acidilactici H (designated JBL1095) or treated with pediocin AcH (a bacteriocin) as a novel approach to control the growth of L. monocytogenes in wiener exudates. Initially, pediocin AcH caused rapid death (decrease of 0.74 log10 CFU/ml in 2 h) of L. monocytogenes in exudate held at 4 degrees C, but thereafter the inactivation was similar to that in control exudate (L. monocytogenes only) or exudate containing L. monocytogenes plus JBL1095. At 25 degrees C, L. monocytogenes grew in the presence of JBL1095 during the first 64 h of incubation, but thereafter the numbers of the pathogen decreased appreciably (5.84 log10 CFU/ml in 3 days). In the presence of pediocin AcH, there was a gradual decrease in numbers of L. monocytogenes throughout the storage period at 25 degrees C. These data indicate that added biopreservatives can potentiate and amplify the intrinsic listeriostatic or listericidal activity of wiener exudate.  相似文献   

15.
The activities of catalase, superoxide dismutase, and a thiol-activated hemolysin produced by four strains of Listeria monocytogenes propagated in media containing various concentrations of sodium chloride were examined. L. monocytogenes 7644 showed an increase in catalase, superoxide dismutase, and thiol-activated hemolysin activities when grown in a medium containing 2.5% (wt/vol) NaCl followed by a decrease in activities when propagated in media containing salt concentrations higher than 2.5%. L. monocytogenes LCDC 81-861 demonstrated enhanced catalase activity when grown in media containing NaCl ranging from 1.5 to 4.6% and increased superoxide dismutase activity when propagated in media containing 1.5 to 3.5% NaCl. L. monocytogenes LCDC 81-861 did not exhibit any detectable hemolysin activity under the conditions tested. After growth in various NaCl-containing media, both strains were subjected to sublethal heat injury for 30 min at 55 degrees C. L. monocytogenes LCDC 81-861 showed increased sensitivity to the heat treatment when grown in media containing 4.6 and 6.5% NaCl, whereas L. monocytogenes 7644 did not exhibit enhanced heat lability.  相似文献   

16.
The activities of catalase, superoxide dismutase, and a thiol-activated hemolysin produced by four strains of Listeria monocytogenes propagated in media containing various concentrations of sodium chloride were examined. L. monocytogenes 7644 showed an increase in catalase, superoxide dismutase, and thiol-activated hemolysin activities when grown in a medium containing 2.5% (wt/vol) NaCl followed by a decrease in activities when propagated in media containing salt concentrations higher than 2.5%. L. monocytogenes LCDC 81-861 demonstrated enhanced catalase activity when grown in media containing NaCl ranging from 1.5 to 4.6% and increased superoxide dismutase activity when propagated in media containing 1.5 to 3.5% NaCl. L. monocytogenes LCDC 81-861 did not exhibit any detectable hemolysin activity under the conditions tested. After growth in various NaCl-containing media, both strains were subjected to sublethal heat injury for 30 min at 55 degrees C. L. monocytogenes LCDC 81-861 showed increased sensitivity to the heat treatment when grown in media containing 4.6 and 6.5% NaCl, whereas L. monocytogenes 7644 did not exhibit enhanced heat lability.  相似文献   

17.
AIMS: The effectiveness of freeze-dried powder, fermented with bacteriocin producing Carnobacterium piscicola CS526, was evaluated for the inhibition of Listeria monocytogenes in a food model. METHODS AND RESULTS: A 10% solution of milk whey powder was fermented with a bacteriocinogenic C. piscicola CS526 Bac(+) or its nonbacteriocinogenic mutant strain CS526 Bac(-) at 30 degrees C for 12 h and freeze-dried. The freeze-dried piscicocin CS526 Bac(+) fermentate exhibited strong anti-listerial activity even at a concentration of 1% (w/v) in sterile water (pH 7), but the piscicocin CS526 Bac(-) fermentate and nonfermented whey powder had no anti-listerial activity. In the presence of 10% piscicocin CS526 Bac(+) fermentate, L. monocytogenes in ground meat rapidly decreased from 10(5) CFU g(-1) to less than the detection limit (3.0 x 10(3) CFU g(-1)) within 5 and 1 days at 4 and 12 degrees C, and was bacteriostatically inhibited for 25 and 4 days at 4 and 12 degrees C respectively. Furthermore, this inhibitory effect was enhanced at lower temperatures. CONCLUSIONS: Piscicocin CS526 Bac(+) fermentate was effective for the control of L. monocytogenes in a food model at refrigeration temperatures. SIGNIFICANCE AND IMPACT OF THE STUDY: A freeze-dried bioactive piscicocin CS526 Bac(+) powder can be a powerful tool to ensure food safety against L. monocytogenes contamination in refrigerated foods such as ready-to-eat products.  相似文献   

18.
The growth of Listeria monocytogenes WSLC 1364, originating from a cheese-borne outbreak, was examined in the presence and in the absence of a pediocin AcH-producing Lactobacillus plantarum strain on red smear cheese. Nearly complete inhibition was observed at 10(2) CFU of L. monocytogenes per ml of salt brine solution, while contamination with Listeria mutants resistant to pediocin resulted in high cell counts of the pathogen on the cheese surface. The inhibition was due to pediocin AcH added together with the L. plantarum culture to the brine solution but not to bacteriocin production in situ on cheese. Pediocin resistance developed in vitro at different but high frequencies in all 12 L. monocytogenes strains investigated, and a resistant mutant remained stable in a microbial surface ripening consortium over a 4-month production process in the absence of selection pressure. In conclusion, the addition of a L. plantarum culture is a potent measure for combating Listeria in a contaminated production line, but because of the potential development of resistance, it should not be used continuously over a long time in a production line.  相似文献   

19.
In this study, growth of Listeria monocytogenes in a low conductivity growth medium (LCGM) was simultaneously monitored by conductivity and pH measurements. Detection times obtained from the conductivity and pH growth curves were inversely related to the initial concentration of L. monocytogenes in the medium. Linear responses were found by plotting detection times obtained from both conductivity and pH growth curves as a function of initial cell concentration in the range of 10(2) to 10(7) cfu/mL. The detection time was approximately 12 and 2 h for 10(2) and 10(7) cfu/mL of viable L. monocytogenes, respectively, using the conductivity growth curves, whereas it was approximately 1 h less using the pH growth curves. This dual detection system was used for evaluating the growth of acid-, temperature-, and salt-treated L. monocytogenes in the medium. Acid stress at pH 2 and 3 for 3 h caused approximately 12 and 4 h delay in the detection time on pH growth curves, while stress at pH 5 for 3 h did not cause a significant delay in detection time. Delay in detection times was also observed for L. monocytogenes cells exposed to 45 degrees C for more than 1 h (2 and 6 h). Exposure to 10% NaCl for 3 h did not cause visible delay in the detection time. These observations on detection times for stressed L. monocytogenes had a consistent trend with the cell number decrease determined by surface plating method.  相似文献   

20.
In the present study, we identified several process variables that significantly affect the efficiency of supercritical carbon dioxide inactivation of the food-borne pathogen Listeria monocytogenes. Treatment with SC-CO(2) completely disabled the colony-forming activity of the cells (8-log reduction) within specific treatment time (10-50 min), pressure (80-150 bar), and temperature ranges (35-45 degrees C). Microorganism inactivation rates increased proportionally with pressure and temperature, but the inactivation rate decreased significantly when cells were suspended in phosphate-buffered saline rather than in physiological saline. Additionally, when the microbial cell suspension was 80-100% (w/w) of water, the SC-CO(2)-mediated reduction in CFU ml(-1) was 4-8 log higher at the same treatment conditions than in typical cell suspensions (a water content of 800-4000% [w/w]) or dry preparations that had only 2-10% (w/w) of water. The addition of a fatty acid, oleic acid, decreased the effectiveness of the microbial inactivation by SC-CO(2), but the addition of a surfactant, sucrose monolaurate, increased the effectiveness. Therefore, cosolvents for SC-CO(2), including water, a fatty acid, and a surfactant in this study, were found to greatly influence on the inactivation effectiveness. The extraction of cellular substances, such as nucleic acid- and protein-like materials and fatty acids, was monitored by spectrophotometry and GC/MS and increased with SC-CO(2) treatment time. Additionally, using scanning and transmission electron microscopies, we investigated morphological changes in the SC-CO(2)-treated cells. The effects of the variables we have described herein represent a significant contribution to our current knowledge of this method of inactivating food-borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号