首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of pneumotoxicity of 3-methylindole has been postulated to occur via protein alkylation or lipid peroxidation. This report describes the effects of the addition of 3-methylindole to goat lung microsomes to evaluate the possibility that this xenobiotic may increase NADPH-supported lipid peroxidation. Concentrations of malondialdehyde were measured as an index of lipid peroxidation. Instead of a stimulation of lipid peroxidation by 3-methylindole, a complete inhibition of lipid peroxidation was produced by concentrations of 3-methylindole as low as 10 microM. The addition of 3-methylindole to actively peroxidizing microsomes (NADPH-supported) caused an immediate cessation of malondialdehyde production. These results demonstrate that 3-methylindole pneumotoxicity does not proceed by a mechanism of lipid peroxidation, but in fact, this molecule may act as an effective antioxidant to prevent lipid peroxidation in pulmonary tissue.  相似文献   

2.
Antioxidant capabilities of scoparone, the component of Artemisia scoparia and other medicinal plants, against lipid peroxidation induced by ultraviolet radiation or Fenton reaction have been analyzed. Lipid peroxidation was monitored by measuring the absorption spectra of the conjugated dienes and quantified by the Klein oxidation index. Obtained results imply that scoparone is a very efficient inhibitor of ultraviolet radiation-induced lipid peroxidation and damage.  相似文献   

3.
Protective capabilities were studied of carboxymethylated (1-->3)-beta-D-glucan from Saccharomyces cerevisiae cell wall against lipid peroxidation in phosphatidylcholine liposomes induced by OH radicals produced with Fenton's reagent (H2O2/Fe2+) and also by microwave radiation using absorption UV-VIS spectrophotometry. A significant decrease in the conjugated diene production, quantified as Klein oxidation index, was observed in the presence of a moderate amount of added glucan. Increase of the oxidation index was accompanied with enhanced carboxyfluorescein leakage as a result of liposome membrane destabilization. This process was markedly suppressed with glucan present in the liposome suspension. Therefore, glucan may be considered as a potent protector against microwave radiation-induced cell damage.  相似文献   

4.
The effect of the plant growth regulator, triacontanol (TRIA) on lipid peroxidation was studied in three different systems: (i) isolated chloroplasts of spinach (Spinacea oleracea L.) leaves; (ii) egg lecithin liposomes; and (iii) soybean lipoxygenase (LOX) system. The nonenzymatic lipid peroxidation in isolated chloroplasts and egg lecithin liposomes was measured as the amount of thiobarbituric acid reactive substances (TBARS) formed. Inhibition of Fe2+ and/or light-induced lipid peroxidation by TRIA was observed in both isolated chloroplasts and egg lecithin liposomes. The kinetics of soybean lipoxygenase-1 (LOX-1) was studied using linoleic acid as the substrate. The enzyme was competitively inhibited by TRIA. The Ki for TRIA inhibition of the enzyme was estimated to be 3.2-5.0 microM according to different methods of estimation. TRIA has been known to exhibit anti-inflammatory action in animals and this anti-inflammatory effect of TRIA might be mediated through inhibition of lipid peroxidation. Since LOX inhibitors have been extensively used as therapeutic agents, TRIA, being a natural compound has been suggested to be an effective anti-inflammatory drug.  相似文献   

5.
Superoxide dismutase (SOD) taken in minor concentrations (a few U/ml) displays a pronounced inhibiting effect on the chain oxidation of methyl linoleate and methyl linolenate (but not methyl oleate) induced by 2,2'-azobis(2-amidinopropan) dihydrochloride (AAPH) in micellar solutions of sodium dodecyl sulfate and Triton X-100 in phosphate buffer, pH 7.40, at 37.0 degrees C. The inhibition is evidently caused by purging the system from O(2)*(-). The latter suggests the formation of O(2)*(-) (HO(2)* in the course of peroxidation, most likely, via beta-decay of lipid peroxy radical (LO(2)*. Thermodynamic estimations verify a rather high probability of beta-decay of LO(2)* produced from polyunsaturated fatty acids by contrast to that produced from saturated and monoenic fatty acids. It is speculated that O(2)*(-) (HO(2)*, being an amphiphilic, reactive and highly mobile species, participates in intermicellar (interliposomal) transfer of free valence during lipid peroxidation in microheterogeneous systems.  相似文献   

6.
Recent evidence indicates that site-specific crosstalk between O-GlcNAcylation and phosphorylation and the O-GlcNAcylation of kinases play an important role in regulating cell signaling. However, relatively few kinases have been analyzed for O-GlcNAcylation. Here, we identify additional kinases that are substrates for O-GlcNAcylation using an in vitro OGT assay on a functional kinase array. Forty-two kinases were O-GlcNAcylated in vitro, representing 39% of the kinases on the array. In addition, we confirmed the in vivo O-GlcNAcylation of three identified kinases. Our results suggest that O-GlcNAcylation may directly regulate a substantial number of kinases and illustrates the increasingly complex relationship between O-GlcNAcylation and phosphorylation in cellular signaling.  相似文献   

7.
Elevated blood glucose and free fatty acids induce oxidative stress associated with the incidence of cardiovascular disease. In contrast, laminar shear stress (LSS) plays a critical role in maintaining vascular health. The present study examined the mechanism for the antioxidant effect of LSS attenuating the oxidative stress induced by high glucose (HG) and arachidonic acid (AA) in human umbilical vein endothelial cells. HG and AA synergistically decreased cell viability and increased glutathione (GSH) oxidation and lipid peroxidation. The lipid peroxidation was markedly prevented by LSS as well as tetrahydrobiopterin (BH4) and GSH. LSS increased BH4 and GSH contents, and expression of GTP cyclohydrolase-1 and glutamylcysteine ligase (GCL) involved in their biosynthesis. Inhibition of GCL activity by DL-buthionine-(S,R)-sulfoximine and small-interfering RNA-mediated knockdown of GCL lessened the antioxidant effect of LSS. Therefore, it is suggested that LSS enhances antioxidant capacity of endothelial cells and thereby attenuates the oxidative stress caused by cardiovascular risk factors.  相似文献   

8.
9.
Conjugated linoleic acid induces lipid peroxidation in humans   总被引:11,自引:0,他引:11  
Basu S  Smedman A  Vessby B 《FEBS letters》2000,468(1):33-36
Conjugated linoleic acid (CLA) is shown to have chemoprotective properties in various experimental cancer models. CLA is easily oxidised and it has been suggested that an increased lipid oxidation may contribute to the antitumorigenic effects. This report investigates the urinary levels of 8-iso-PGF(2alpha), a major isoprostane and 15-keto-dihydro-PGF(2alpha), a major metabolite of PGF(2alpha), as indicators of non-enzymatic and enzymatic lipid peroxidation after dietary supplementation of CLA in healthy human subjects for 3 months. A significant increase of both 8-iso-PGF(2alpha) and 15-keto-dihydro-PGF(2alpha) in urine was observed after 3 months of daily CLA intake (4.2 g/day) as compared to the control group (P<0.0001). Conjugated linoleic acid had no effect on the serum alpha-tocopherol levels. However, gamma-tocopherol levels in the serum increased significantly (P=0. 015) in the CLA-treated group. Thus, CLA may induce both non-enzymatic and enzymatic lipid peroxidation in vivo. Further studies of the mechanism behind, and the possible consequences of, the increased lipid peroxidation after CLA supplementation are urgently needed.  相似文献   

10.
Lead-induced tissue fatty acid alterations and lipid peroxidation   总被引:6,自引:0,他引:6  
Previous work showed that dietary lead (Pb) increases the relative concentration of arachidonic acid (20∶4) as a percentage of total fatty acids, and decreases the relative proportion of linoleic acid (18∶2) to arachidonic acid (18∶2/20∶4) in chick liver, serum, and erythrocyte membranes. The present investigation was undertaken to examine the time-course and magnitude of the fatty acid alterations with increasing dietary Pb levels. We also examined the effects of Pb on the fatty acid composition and lipid peroxide content of hepatic subcellular organelles. In Exp. 1, chicks were fed diets containing 0, 62.5, 125, 250, 500, or 1000 ppm added Pb (as Pb acetate trihydrate) from 1 to 21 d of age. After 21 d, no growth effects were observed; however, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver and serum lipids, and in total hepatic phospholipids in a dose-dependent manner. Hepatic mitochondrial membrane fatty acids were not altered, nor was there any increase in hepatic lipid peroxidation. In Exp. 2, chicks were fed diets containing 0, 500, 1000, or 2000 ppm added Pb from 1 to 21 or 22 d of age. Pb depressed growth in a dose-dependent manner. In addition, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver lipids and in hepatic mitochondrial and microsomal membranes in a dose-dependent manner. Total hepatic lipid peroxidation was increased over control values by 1000 ppm Pb, and hepatic microsomal lipid peroxidation was increased by dietary Pb levels of 1000 and 2000 ppm. In Exp. 3, body weight, hepatic microsomal lipid peroxidation, and fatty acid composition were determined in 4-, 9-, 14-, 18-, and 23-d-old chicks fed 0 or 1500 ppm added Pb. Body weights of Pb-treated chicks were significantly lower than those of control chicks by day 18. Microsomal 20∶4 concentration and peroxidation increased, and the 18∶2/20∶4 ratio decreased with age in both groups, but the changes were of greater magnitude in the Pb-treated chicks. The results suggest that some of the manifestations of Pb toxicity may be a reflection of increased concentration of 20∶4 in specific membranes. Further, since the Pb-induced alterations in fatty acid composition were noted in the absence of any growth depression, we propose that fatty acid composition is more sensitive than growth rate to the presence of lead in the diet.  相似文献   

11.
Aldehydic lipid peroxidation products derived from linoleic acid   总被引:5,自引:0,他引:5  
Lipid peroxidation (LPO) processes observed in diseases connected with inflammation involve mainly linoleic acid. Its primary LPO products, 9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) and 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), decompose in multistep degradation reactions. These reactions were investigated in model studies: decomposition of either 9-HPODE or 13-HPODE by Fe(2+) catalyzed air oxidation generates (with the exception of corresponding hydroxy and oxo derivatives) identical products in often nearly equal amounts, pointing to a common intermediate. Pairs of carbonyl compounds were recognized by reacting the oxidation mixtures with pentafluorobenzylhydroxylamine. Even if a pure lipid hydroperoxide is subjected to decomposition a great variety of products is generated, since primary products suffer further transformations. Therefore pure primarily decomposition products of HPODEs were exposed to stirring in air with or without addition of iron ions. Thus we observed that primary products containing the structural element R-CH=CH-CH=CH-CH=O add water and then they are cleaved by retroaldol reactions. 2,4-Decadienal is degraded in the absence of iron ions to 2-butenal, hexanal and 5-oxodecanal. Small amounts of buten-1,4-dial were also detected. Addition of m-chloroperbenzoic acid transforms 2,4-decadienal to 4-hydroxy-2-nonenal. 4,5-Epoxy-2-decenal, synthetically available by treatment of 2,4-decadienal with dimethyldioxirane, is hydrolyzed to 4,5-dihydroxy-2-decenal.  相似文献   

12.
Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins.  相似文献   

13.
14.
Liposomes composed of soybean phosphatidylcholine were peroxidized using the reagent sodium hypochlorite or the myeloperoxidase-hydrogen peroxide-Cl- system. Linoleic acid hydroperoxide previously prepared from linoleic acid by means of lipoxidase was incorporated into liposomes. The yield of thiobarbituric acid reactive substances (TBARS) continuously increased with higher amounts of hydroperoxide groups after the initiation of lipid peroxidation by hypochlorous acid producing systems. The accumulation of TBARS was inhibited by scavengers of free radicals such as butylated hydroxytoluene and by the scavengers of hypochlorous acid, taurine and methionine. Lipid peroxidation was also prevented by sodium azide or chloride free medium in the myeloperoxidase-hydrogen peroxide-Cl- system. Here we show for the first time that the reaction of hypochlorous acid with a biologically relevant hydroperoxide yields free radicals able to cause further oxidation of lipid molecules.  相似文献   

15.
Reactive oxygen species play an important role in several acute lung injuries. The lung tissue contains polyunsaturated fatty acids (PUFAs) that are substrates of lipid peroxidation that may lead to loss of the functional integrity of the cell membranes. In this study, we compare the in vitro protective effect of pulmonary surfactant protein A (SP-A), purified from porcine surfactant, against ascorbate-Fe(2+) lipid peroxidation stimulated by linoleic acid hydroperoxide (LHP) of the mitochondria and microsomes isolated from rat lung; deprived organelles of ascorbate and LHP were utilized as control. The process was measured simultaneously by chemiluminescence as well as by PUFA degradation of the total lipids isolated from these organelles. The addition of LHP to rat lung mitochondria or microsomes produces a marked increase in light emission; the highest value of activation was produced in microsomes (total chemiluminescence: 20.015+/-1.735 x 10(5) cpm). The inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (2.5 to 5.0 microg) of SP-A in rat lung mitochondria and 2.5 to 7.5 microg of SP-A in rat lung microsomes. The inhibitory effect reaches the highest values in the mitochondria, thus, 5.0 microg of SP-A produces a 100% inhibition in this membranes whereas 7.5 microg of SP-A produces a 51.25+/-3.48% inhibition in microsomes. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized membranes was found in the arachidonic acid content; this decreased from 9.68+/-1.60% in the native group to 5.72+/-1.64% in peroxidized mitochondria and from 7.39+/-1.14% to 3.21+/-0.77% in microsomes. These changes were less pronounced in SP-A treated membranes; as an example, in the presence of 5.0 microg of SP-A, we observed a total protection of 20:4 n-6 (9.41+/-3.29%) in mitochondria, whereas 7.5 microg of SP-A produced a 65% protection in microsomes (5.95+/-0.73%). Under these experimental conditions, SP-A produces a smaller inhibitory effect in microsomes than in mitochondria. Additional studies of lipid peroxidation of rat lung mitochondria or microsomes using equal amounts of albumin and even higher compared to SPA were carried out. Our results indicate that under our experimental conditions, BSA was unable to inhibit lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria or microsomes, thus indicating that this effect is specific to SP-A.  相似文献   

16.
In a search for plant products against cancer, the protective effect of two plant products, ursolic acid isolated from Ocimum sanctum and oleanolic acid from Eugenia jumbolana against free radical induced damage was studied. Three different standard systems viz., ascorbic acid, carbon tetrachloride, ADP/Iron were used to induce lipid peroxidation in isolated rat liver microsomes in vitro. Both oleanolic acid and ursolic acid offered remarkable protection of 90% and 60% respectively. Both the compounds did not induce lipid peroxidation by themselves that improved the therapeutic application.  相似文献   

17.
Microsomal lipid peroxidation   总被引:1,自引:0,他引:1  
  相似文献   

18.
Biosynthesis of certain biologically active substances (prostaglandins, thromboxanes, prostacyclins and leukotrienes) in animal tissues occurs with participation of cyclooxygenases and lipoxygenases, enzymic systems of lipid peroxidation. In normal physiological and pathological processes the enzymic lipid peroxidation by microsomal dioxygenases is considerably more active than the nonenzymic one in the same membrane structures. The molecular structure of the products of the enzymic and nonenzymic peroxidation of lipids also differs essentially. An assumption is advanced that cytosol lipoxygenase may be an easily dissociating component of the cyclooxygenase multienzymic complex and its transition from the biomembrane to the cell cytoplasm is accompanied by changes in the enzyme conformation and chemical nature of the products resulted from polyenic lipids oxidation catalyzed by the enzyme.  相似文献   

19.
The potential for iron bound to transferrin to be released and promote the peroxidation of phospholipid liposomes was investigated using ADP as a low molecular weight chelator and Superoxide generated by the xanthine/ xanthine oxidase system as the reducing agent. Lipid peroxidation in this system was dependent upon transferrin as the source of iron; increasing the transferrin concentration resulted in increased rates of lipid peroxidation. Increasing the xanthine oxidase activity also caused increased rates of peroxidation. Catalase stimulated rates of peroxidation at all xanthine oxidase activities tested. Conditions resulting in the most rapid release of iron from transferrin (low pH, high ADP) did not promote the greatest rates of lipid peroxidation, indicating that at neutral pH, rates of lipid peroxidation may be limited by the availability of iron. It is concluded that transferrin is not a likely source of iron for catalysis of deleterious biological oxidations such as lipid peroxidation in vivo.  相似文献   

20.
Thiol-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
Initiation of lipid peroxidation in liposomes by cysteine, glutathione, or dithiothreitol required iron, and was not inhibited by superoxide dismutase. The absence of superoxide involvement in thiol autoxidation was confirmed by the inability of superoxide dismutase to inhibit thiol reduction of cytochrome c. Furthermore, the rate of cytochrome c reduction by thiols was not decreased under anaerobic conditions. We suggest that lipid peroxidation initiated by thiols and iron occurs via direct reduction of iron. Control of cellular thiol autoxidation, and reactions occurring as a consequence, such as lipid peroxidation, must therefore involve chelation of transition metals to control their redox reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号