首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of root‐colonising antagonistic microbial biocontrol agents was evaluated for their ability to improve plant growth and suppress aflatoxigenic fungal and aflatoxin contamination in groundnut. By considering root colonisation of groundnut seedlings, plant growth promotion and antagonism against aflatoxigenic Aspergillus flavus as preliminary criteria, eight rhizobacteria and nine Trichoderma spp. were selected and characterised for their beneficial traits. These strains gave varying results for IAA production, phosphate solubilisation, ACC deaminase, chitinase and siderophore production. Under laboratory and greenhouse conditions, these strains significantly (P < 0.05) suppressed seed‐borne and rhizospheric population of A. flavus and improved seed quality variables. However, cdELISA results revealed that none of the biocontrol strains were effective in reducing aflatoxin level in seed. Based on the overall performance, Pseudomonas fluorescens 2bpf, Bacillus sp. Bsp‐3/aM and Trichoderma atroviride UMDBT‐Dha.Tat8 were used for field trials in the form of talcum powder formulations. Under field conditions, biocontrol agents improved seedling emergence, plant biomass and pod yield. Seeds harvested from plots treated with biocontrol agents showed significant (P < 0.05) reduction in A. flavus infection and aflatoxin production after 6 months' storage. Use of microbial strains with multiple beneficial traits is advantageous in bioformulation development. Hence, in future, these formulations will play a major role as biofertilisers and biopesticides, which can reduce the usage of agrochemicals up to greater extents in groundnut production.  相似文献   

2.
Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.  相似文献   

3.
In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B1 (AFB1) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB1 contamination levels in both types of groundnut products with maximum AFB1 levels of 11,100 μg/kg (groundnut kernels) and 3000 μg/kg (milled groundnut powder). However, paired t test analysis showed that AFB1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets.  相似文献   

4.
Transformation of sterigmatocystin and O-methylsterigmatocystin (two metabolic aflatoxin precursors) to aflatoxins by aflatoxigenic and nonaflatoxigenic field isolates of Aspergillus flavus was studied. The 24 nonaflatoxigenic isolates investigated failed to transform both precursors. Among the 8 aflatoxin-producing isolates used, 7 transformed both precursors whereas the remaining failed to transform both. According to these results, the usefulness of the measurement of enzymatic activities related to aflatoxin production in understanding the true status of conflictive field isolates is discussed.Abbreviations ST sterigmatocystin - OMST O-methylsterigmatocystin - AFB1 aflatoxin B1 - AFB2 aflatoxin B2 - AFG1 aflatoxin G1 - AFG2 aflatoxin G2 - GM growth medium of Adye and Mateles - RM replacement medium of Adye and Mateles  相似文献   

5.
Aflatoxin B1 (AFB1) is one of the most commonly found mycotoxins in food commodities, particularly cereals, oilseeds, spices and tree nuts. In the past decade, aptamers have come into limelight and emerged as a new biosensing element replacing antibodies in various detection formats. Herein we report a faster, more sensitive, high throughput method for the detection of AFB1 using AFB1‐specific aptamers. The assay format was based on a competitive reaction of the fluorescent tagged aptamer specific to AFB1 with the aflatoxin conjugate. Under optimal conditions, a linear range of detection (50 ng to 50 pg) was achieved with a limit of detection (LOD) of 10 pg/mL in the buffer system. Results of inter‐ and intra‐assay revealed that the assay was repeatable with standard deviation in acceptable range. The assay was also validated in food samples such as dried red chilies, groundnut and whole pepper with recovery in the range of 92 to 102% at 10 ng/mL and 100 pg/mL levels. The aptasensor assay was also compared with standard analytical method of HPLC and was found to be more sensitive. This detection technique has the potential to be developed into a biosensor platform for AFB1 detection.  相似文献   

6.

Aims

To investigate the effects of temperature and medium composition on growth/aflatoxin inhibitory activities of terpenoids gossypol, gossypolone and apogossypolone against Aspergillus flavus and A. parasiticus.

Methods and Results

The compounds were tested at a concentration of 100 μg ml?1 in a Czapek Dox (Czapek) agar medium at 25, 31 and 37°C. Increased incubation temperature marginally increased growth inhibition caused by these compounds, but reduced the aflatoxin inhibition effected by gossypol. Gossypolone and apogossypolone retained good aflatoxin inhibitory activity against A. flavus and A. parasiticus at higher incubation temperatures. However, increased temperature also significantly reduced aflatoxin production in control cultures. The effects of the terpenoids on fungal growth and aflatoxin production against the same fungi were also determined in Czapek, Czapek with a protein/amino acid addendum and yeast extract sucrose (YES) media. Growth of these fungi in the protein‐supplemented Czapek medium or in the YES medium greatly reduced the growth inhibition effects of the terpenoids. Apogossypolone displayed strong anti‐aflatoxigenic activity in the Czapek medium, but this activity was significantly reduced in the protein‐amended Czapek and YES media. Gossypol, which displayed little to no aflatoxin inhibitory activity in the Czapek medium, did yield significant anti‐aflatoxigenic activity in the YES medium.

Conclusions

Incubation temperature and media composition are important parameters involved in the regulation of aflatoxin production in A. flavus and A. parasiticus. These parameters also affect the potency of growth and aflatoxin inhibitory activities of these gossypol‐related compounds against aflatoxigenic fungi.

Significance and Impact of the Study

Studies utilizing gossypol‐related compounds as inhibitory agents of biological activities should be interpreted with caution due to compound interaction with multiple components of the test system, especially serum proteins.  相似文献   

7.
This study was carried out to investigate the incidence of the aflatoxin-producing fungus, Aspergillus flavus in commercially available roasted and raw groundnuts sold by various vendors. Secondly, the study evaluated the antagonistic activity of Bacillus isolates against A. flavus in vitro and in vivo. All the 42 groundnut samples collected from the various vendors were contaminated with A. flavus. There was no significant difference (p > 0.05) in the incidence of A. flavus contamination in roasted and raw groundnut samples. The results of the in vitro bioassay indicated that the Bacillus isolates inhibited the growth of A. flavus ranging from 61 to 76%. In the in vivo study using groundnut kernels, increase in incubation time and concentration of the Bacillus isolates enhanced control of A. flavus. We showed that Bacillus isolates from the phyllosphere of ryegrass has potential as biocontrol agent for the control of A. flavus in groundnuts.  相似文献   

8.
9.
Aflatoxins produced by the fungus Aspergillus flavus are potent carcinogens and account for large monetary losses worldwide in peanuts, maize, and cottonseed. Biological control in which a nontoxigenic strain of A. flavus is applied to crops at high concentrations effectively reduces aflatoxins through competition with native aflatoxigenic populations. In this study, eight nontoxigenic strains of A. flavus belonging to different vegetative compatibility groups and differing in deletion patterns within the aflatoxin gene cluster were evaluated for their ability to reduce aflatoxin B1 when paired with eight aflatoxigenic strains on individual peanut seeds. Inoculation of wounded viable peanut seeds with conidia demonstrated that nontoxigenic strains differed in their ability to reduce aflatoxin B1. Reductions in aflatoxin B1 often exceeded expected reductions based on a 50:50 mixture of the two A. flavus strains, although one nontoxigenic strain significantly increased aflatoxin B1 when paired with an aflatoxigenic strain. Therefore, nontoxigenicity alone is insufficient for selecting a biocontrol agent and it is also necessary to test the effectiveness of a nontoxigenic strain against a variety of aflatoxigenic strains.  相似文献   

10.
Aflatoxin contamination of major food crops is a serious problem in Senegal. Maize and sesame samples were collected during a survey in five districts located in two agro‐ecological zones in Senegal to determine levels of aflatoxin contamination and the distribution and toxigenicity potential of members of Aspergillus section Flavi. Maize samples from the Guinea Savannah zone (SG) exhibited lower aflatoxin content and colony‐forming units (cfu) than those collected from the Sudan Savannah (SS) zone. In maize, aflatoxin concentration and cfu of A. flavus varied with cultivars, shelling practices and storage methods. The maize variety ‘Jaune de Bambey’ had high aflatoxin levels in both agro‐ecological zones. Aflatoxin content in machine‐shelled maize (120 ng/g) was more than 10‐fold higher than that in manually shelled (8 ng/g) or unshelled maize. Aflatoxin content (between 0.1 and 1.2 ng/g) and cfu values (between 13 and 42 000 cfu/g) of sesame were low, suggesting a low susceptibility to A. flavus. In both agro‐ecological zones, and in all storage systems, aflatoxin contamination was lower in sesame than in maize. In this study, only three species of Aspergillus section Flavi (A. flavus, A. tamarii and the unnamed taxon SBG) were observed with the frequency of toxigenic strains remaining below 50% in maize from the SG zone compared with 51% of isolates from samples collected in Sedhiou district in SS zone. The proportion of toxigenic strains isolated from sesame was variable. For both crops, L‐strains were the most prevalent in the two agro‐ecological zones. Some of the atoxigenic strains collected could be valuable microbial resources for the biological control of aflatoxin in Senegal.  相似文献   

11.
The occurrence of spoilage fungi and Aspergillus section Flavi populations, the aflatoxins incidence, the role of insects as vectors of mycotoxin-producing fungi and the AFs-producing ability of the isolated species throughout the peanut (Arachis hypogaea L.) storage period were evaluated. Analyses of fungal populations from 95 peanut seed samples did not demonstrate significant differences between the incidences in each sampling period. Aspergillus section Flavi were isolated during all incubation periods. Cryptolestes spp. (Coleoptera: Cucujidae) were collected in August, September and October with 18, 16 and 28% of peanut samples contaminated, respectively. Insects isolated during August showed 69% of Aspergillus section Flavi contamination. A. flavus was the most frequently isolated (79%) from peanut seeds and from insect (59%). The greater levels of AFB1 were detected in September and October with a mean of 68.86 μg/kg and 69.12 μg/kg respectively. The highest proportion of A. flavus toxigenic strains (87.5%) was obtained in June. The presence of Aspergillus section Flavi and insect vectors of aflatoxigenic fungi presented a potential risk for aflatoxin production during the peanut storage period. Integrated management of fungi and insect vectors is in progress.  相似文献   

12.
Ismail MA  Zaky ZM 《Mycopathologia》1999,146(3):147-154
The luncheon meat samples analyzed, which were produced locally by the two main luncheon meat producing companies in Egypt were relatively highly contaminated either by moulds and yeasts in general, aflatoxigenic species and aflatoxin residues in particular. The most frequently encountered fungi from the samples were yeasts, Aspergillus niger, A. flavus, Penicillium chrysogenum, Rhizopus stolonifer, Mucor circinelloides. Less common were Cladosporium sphaerospermum, Alternaria alternata, Mycosphaerella tassiana, P. aurantiogriseum and P. oxalicum. The most important aflatoxigenic species, A. flavus, was isolated frequently. It was 10% of the total fungal isolates from both samples of the two companies. Seven luncheon meat samples out of 50 analyzed were positive for aflatoxin B1 or B1 and G1, while all samples were negative for aflatoxins B2, G2, M1 and M2. Aflatoxin B1 was detected only in 4 and 3 samples out of 25 analyzed from each of company A and B, respectively. The highest detectable level, 11.1 ppb, was recorded in a sample from company B and the least, 0.5 ppb, in a sample from company A. Aflatoxin G1, at concentration of 3.2 ppb, was detected in only one sample of the aflatoxin B1 – contaminated 3 samples of company B: this sample also had the highest level of aflatoxin B1. Some luncheon meat samples had higher numbers of aflatoxigenic A. flavus than others, however these samples were negative for aflatoxins. The hazardous potential of such contamination will be discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Aflatoxin-lysine (AFB1-lys) adduct levels in blood samples collected from 230 individuals living in three districts of Malawi (Kasungu, Mchinji, and Nkhotakota) and aflatoxin B1 (AFB1) levels in groundnut and maize samples collected from their respective homesteads were determined using indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) methods. AFB1-lys adducts were detected in 67% of blood samples, with a mean concentration of 20.5?±?23.4 pg/mg of albumin. AFB1 was detected in 91% of groundnut samples and in 70% of maize samples, with mean AFB1 levels of 52.4 and 16.3 μg/kg, respectively. All participants of this study reported consuming maize on a daily basis and consuming groundnuts regularly (mean consumption frequency per week: 3.2?±?1.7). According to regression analysis, a frequency of groundnut consumption of more than four times per week, being female, and being a farmer were significant (p?<?0.05) contributors to elevated AFB1-lys adduct levels in the blood. This is the first report on AFB1-lys adducts in blood samples of residents in Malawi. The results reinforce the urgent need for interventions, aiming at a reduction of aflatoxin exposure of the population.  相似文献   

14.
Groundnut samples, collected soon after harvest, from different districts in the irrigated region (Central Sudan) were free from aflatoxins with the method used. Samples collected from the rainfed region (Western Sudan) showed variable levels of aflatoxin ranging from 100% sample contamination in El Hamdi to only 10% in Casgeal.Damaged pods were highly contaminated with A. flavus and accumulated large amounts of aflatoxins. However, sound intact pods, recorded lower fungal contamination and were almost free of aflatoxins. Groundnut products collected from Khartoum North (Bahri) have higher levels of aflatoxins than those collected from Khartoum and Umdorman. Gray and red roasted pods showed higher amounts of aflatoxins, while the groundnut paste was the least contaminated.None of the three varieties of groundnuts tested in this work was completely resistant to aflatoxin production. A temperature of 30°C and 86.3% relative humidy (RH) are the optimum conditions for both A. flavus growth and aflatoxin production in groundnuts.  相似文献   

15.
《Fungal biology》2022,126(1):82-90
Maize grown in both North and South America are now predominantly genetically modified (GM) cultivars with some resistance to herbicide, pesticide, or both. There is little information on the relative colonisation and aflatoxin B1 (AFB1) production with maize meal-based nutritional matrices based on kernels of non-GM maize and isogenic GM-ones by strains of Aspergillus flavus. The objectives were to examine the effect of interacting conditions of temperature (25–35 °C) and water availability (0.99–0.90 water activity, aw) on (a) mycelial growth, (b) AFB1 production and (c) develop contour maps of optimum and marginal conditions of these parameters for four strains of A. flavus on three different non-GM and isogenic GM-maize based nutritional media. The growth of the four strains of A. flavus (three aflatoxigenic; one non-aflatoxigenic) was relatively similar in relation to the temperature × aw conditions examined on both non-GM and GM-based matrices. Optimum growth overall was at 30–35 °C and 0.99 aw for all four strains. Under water stress (0.90 aw) growth was optimum at 35 °C. Statistically: non-GM, GM cultivars, temperature and aw all significantly affected growth rates. For AFB1 production, all single and interacting factors were statistically significant except for non-GM × GM cultivar. In conclusion, colonisation of GM- and non-GM nutritional sources was similar for the different A. flavus strains examined. The contour maps will be very useful for understanding the ecological niches for both toxigenic and non-toxigenic strains in the context of the competitive exclusion of those producing aflatoxins.  相似文献   

16.
In this study, we investigated the potential for aflatoxin B1 (AFB1) and B2 (AFB2) production in rice grain by 127 strains of Aspergillus flavus isolated from rice grains collected from China. These strains were inoculated onto rice grains and incubated at 28 °C for 21 days. AFB1 and AFB2 were extracted and quantified by high-performance liquid chromatography coupled with fluorescence detection. Among the tested strains, 37% produced AFB1 and AFB2 with levels ranging from 175 to 124 101 μg kg−1 for AFB1 and from not detected to 10 329 μg kg−1 for AFB2. The mean yields of these isolates were 5884 μg kg−1 for AFB1 and 1968 μg kg−1 for AFB2. Overall, most of the aflatoxigenic strains produced higher levels of AFB1 than AFB2 in rice. The obtained information is useful for assessing the risk of aflatoxin contamination in rice samples.  相似文献   

17.
An extensive survey of filamentous fungi isolated from wheat grown and consumed in Lebanon and their capacity to produce aflatoxin B1 (AFB1) and ochratoxin A (OTA) was conducted to assess fungi potential for producing these toxins in wheat. From the 468 samples of wheat kernel, collected at preharvest stage from different locations during 2008 and 2009 cultivation seasons, 3,260 fungi strains were isolated with 49.4% belonging to Penicillium spp. and 31.2% belonging to Aspergillus spp. Penicillium spp. was detected on wheat samples with a high amount of P. verrucosum (37.0%). Among the different Aspergillus spp. isolated, A. niger aggregate was predominant and constituted 37.3%. whereas the isolation rate of A. flavus and A. ochraceus was 32.2 and 25.6%, respectively. The ability to produce OTA and AFB1 by isolates belonging to Aspergillus spp. and Penicillium spp. was analyzed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). It was found that 57.0% of Penicillium spp. and 80% of A. ochraceus isolates tested produced OTA, respectively, at maximum concentrations of 53 and 65 μg/g CYA. As for the aflatoxinogenic ability, 45.3% of A. flavus produced AFB1, with maximum concentration of 40 μg/g CYA. A total of 156 wheat samples were analyzed for the levels of OTA and AFB1 by HPLC-FLD. The results showed that 23.7% were contaminated with OTA, at a concentration higher than 3 μg/kg and 35.2% of these samples were contaminated with AFB1 at concentration higher than 2 μg/kg. The risks originating from toxin levels in wheat produced in Lebanon should be monitored to prevent their harmful effects on public health.  相似文献   

18.
In the present study, 193 Aspergillus strains were isolated from a total of 100 soil samples of pistachio orchards, which all of them were identified as Aspergillus flavus as the most abundant species of Aspergillus section Flavi existing in the environment. Approximately 59%, 81%, and 61% of the isolates were capable of producing aflatoxins (AFs), cyclopiazonic acid (CPA), and sclerotia, respectively. The isolates were classified into four chemotypes (I to IV) based on the ability to produce AFs and CPA. The resulting dendrogram of random amplified polymorphic DNA (RAPD) analysis of 24 selected A. flavus isolates demonstrated the formation of two separate clusters. Cluster 1 contained both aflatoxigenic and non-aflatoxigenic isolates (17 isolates), whereas cluster 2 comprised only aflatoxigenic isolates (7 isolates). All the isolates of cluster 2 produced significantly higher levels of AFs than those of cluster 1 and the isolates that produced both AFB1 and AFB2 were found only in cluster 2. RAPD genotyping allowed the differentiation of A. flavus from Aspergillus parasiticus as a closely related species within section Flavi. The present study has provided for the first time the relevant information on distribution and genetic diversity of different A. flavus populations from nontoxigenic to highly toxigenic enable to produce hazardous amounts of AFB1 and CPA in soils of pistachio orchards. These fungi, either toxigenic or not-toxigenic, should be considered as potential threats for agriculture and public health.  相似文献   

19.
The staple crops, maize, sorghum, bambara nut, groundnut, and sunflower common in semi-arid agro-pastoral farming systems of central Tanzania are prone to aflatoxin contamination. Consumption of such crop produce, contaminated with high levels of aflatoxin B1 (AFB1), affects growth and health. In this paper, aflatoxin contamination in freshly harvested and stored crop produce from central Tanzania was examined, including the efficacy of aflatoxin mitigation technologies on grain/kernal quality. A total of 312 farmers were recruited, trained on aflatoxin mitigation technologies, and allowed to deploy the technologies for 2 years. After 2 years, 188 of the 312 farmers were tracked to determine whether they had adopted and complied with the mitigation practices. Aflatoxigenic Aspergillus flavus and aflatoxin B1 contamination in freshly harvested and stored grains/kernels were assessed. A. flavus frequency and aflatoxin production by fungi were assayed by examining culture characteristics and thin-layer chromatography respectively. AFB1 was assayed by enzyme-linked immunosorbent assay. The average aflatoxin contamination in freshly harvested samples was 18.8 μg/kg, which is above the acceptable standard of 10 μg/kg. Contamination increased during storage to an average of 57.2 μg/kg, indicating a high exposure risk. Grains and oilseeds from maize, sorghum, and sunflower produced in aboveground reproductive structures had relatively low aflatoxin contamination compared to those produced in geocarpic structures of groundnut and bambara nut. Farmers who adopted recommended post-harvest management practices had considerably lower aflatoxin contamination in their stored kernels/grains. Furthermore, the effects of these factors were quantified by multivariate statistical analyses. Training and behavioral changes by farmers in their post-harvest practice minimize aflatoxin contamination and improve food safety. Moreover, if non-trained farmers receive mitigation training, aflatoxin concentration is predicted to decrease by 28.9 μg/kg on average.  相似文献   

20.
Various species of fungi in the genus Aspergillus are the most common causative agents of invasive aspergillosis and/or producers of hepato-carcinogenic mycotoxins. Salicylaldehyde (SA), a volatile natural compound, exhibited potent antifungal and anti-mycotoxigenic activities to A. flavus and A. parasiticus. By exposure to the volatilized SA, the growth of A. parasiticus was inhibited up to 10–75% at 9.5 mM ≤ SA ≤ 16.0 mM, while complete growth inhibition was achieved at 19.0 mM ≤ SA. Similar trends were also observed with A. flavus. The aflatoxin production, i.e., aflatoxin B1 and B2 (AFB1, AFB2) for A. flavus and AFB1, AFB2, AFG1, and AFG2 for A. parasiticus, in the SA-treated (9.5 mM) fungi was reduced by ~13–45% compared with the untreated control. Using gene deletion mutants of the model yeast Saccharomyces cerevisiae, we identified the fungal antioxidation system as the molecular target of SA, where sod1Δ [cytosolic superoxide dismutase (SOD)], sod2Δ (mitochondrial SOD), and glr1Δ (glutathione reductase) mutants showed increased sensitivity to this compound. Also sensitive was the gene deletion mutant, vph2Δ, for the vacuolar ATPase assembly protein, suggesting vacuolar detoxification plays an important role for fungal tolerance to SA. In chemosensitization experiments, co-application of SA with either antimycin A or strobilurin (inhibitors of mitochondrial respiration) resulted in complete growth inhibition of Aspergillus at much lower dose treatment of either agent, alone. Therefore, SA can enhance antifungal activity of commercial antifungal agents required to achieve effective control. SA is a potent antifungal and anti-aflatoxigenic volatile that may have some practical application as a fumigant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号