首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
This study investigated the effect of magnesium (Mg) on sheath blight, caused by Rhizoctonia solani, development on rice plants from cultivars BR‐IRGA 409 and Labelle grown in nutrient solution containing 0.062, 0.125, 0.25 and 0.50 mm of Mg. Sheath blight progress on inoculated sheaths was evaluated by measuring lesions expansion (mm) at 24, 48, 72 and 96 h after inoculation. Data were used to calculate the area under lesion expansion progress curve (AULEPC). The relationship between the foliar Mg concentration and the Mg rates was quadratic. The Mg concentration on leaf sheaths tissue was highest at the Mg rates of 0.389 and 0.400 mm , respectively, for cultivars BR‐IRGA 409 and Labelle. A linear model best described the relationship between the AULEPC and the Mg rates. The AULEPC decreased by 48.7 and 26.2% for plants of cultivars BR‐IRGA 409 and Labelle, respectively, as the Mg rates in the nutrient solution increased. The results permitted to conclude that high foliar Mg concentration played a pivotal role to decrease sheath blight lesions expansion.  相似文献   

2.
Sheath blight, caused by Rhizoctonia solani, is one of the most important rice diseases worldwide especially under irrigated agro‐ecosystems. To date, no rice accession with complete resistance to sheath blight has been reported. However, a number of genotypes with varying levels of resistance have been reported. Twelve genotypes (including mega varieties) viz. Tetep, Jasmine 85, Te‐Qing, Duduruchi, Betichikon, Khatochalani, D‐6766, D‐256, Swarna, Sarju‐52, MTU‐1010 and Samba Mashuri were evaluated for quantitative measurement of partial physiological resistance to sheath blight under controlled conditions using detached tiller method. Three independent experiments, each involving three replications, were conducted. Seven days after inoculation, the following disease variables were measured: number of lesions, lesion length, vertical sheath colonization (VSC) on the tiller, disease severity, relative vertical sheath colonization (RVSC) and survival of the leaf blade. Variation between rice genotypes was observed for all the disease variables. Disease severity and VSC were the two most correlated variables, whereas the number of lesions and mean lesion length were the least correlated variables. The ranking of varieties often differed depending on the disease variable considered. Amongst the genotypes tested, D‐256, Tetep and Jasmin‐85 had the lowest number of lesions and disease severity. Similarly, Tetep and D‐256 showed the lowest levels of RVSC, whilst Jasmine‐85 was found to be intermediate. D‐6766, Samba Mashuri and Betichikon showed the highest levels of disease variables. The fraction of dead leaves ranged from 0.00 to 0.38. No dead leaves were observed in Te‐Qing, Swarna and MTU‐1010. The highest fraction of dead leaves was observed for Betichikon (0.38) followed by Duduruchi and D‐6766 (0.33). Our results suggest that this method in combination with other phenotyping methods could be used to quantify partial resistance to rice sheath blight.  相似文献   

3.

Aim

To examine the inhibition effects of rhizosphere fungal strain MF‐91 on the rice blast pathogen Magnaporthe grisea and sheath blight pathogen Rhizoctonia solani.

Methods and Results

Rhizosphere fungal strain MF‐91 and its metabolites suppressed the in vitro mycelial growth of R. solani. The inhibitory effect of the metabolites was affected by incubation temperature, lighting time, initial pH and incubation time of rhizosphere fungal strain MF‐91. The in vitro mycelial growth of M. grisea was insignificantly inhibited by rhizosphere fungal strain MF‐91 and its metabolites. The metabolites of rhizosphere fungal strain MF‐91 significantly inhibited the conidial germination and appressorium formation of M. grisea. Moreover, the metabolites reduced the disease index of rice sheath blight by 35·02% in a greenhouse and 57·81% in a field as well as reduced the disease index of rice blast by 66·07% in a field. Rhizosphere fungal strain MF‐91 was identified as Chaetomium aureum based on the morphological observation, the analysis of 18S ribosomal DNA internal transcribed spacer sequence and its physiological characteristics, such as the optimal medium, temperature and initial pH for mycelial growth and sporulation production.

Conclusions

Rhizosphere fungus C. aureum is effective in the biocontrolling of rice blast pathogen M. grisea and sheath blight pathogen R. solani both in in vitro and in vivo conditions.

Significance and Impact of the Study

This study is the first to show that rhizosphere fungus C. aureum is a potential fungicide against rice blast and sheath blight pathogens.  相似文献   

4.
Burkholderia glumae is a well‐known pathogen for causing bacterial panicle blight of rice. In this study, the infection process of B. glumae in rice plants at different growing stages was tracked by means of real‐time fluorescence quantitative PCR. Burkholderia glumae tended to colonize at the growing point of rice plants, and the biomass of population was 104 to 108 CFU/g. The most intensive colonization was detected in the upmost leaf in the two‐leaf period. However, after the two‐leaf period, the population of pathogens decreased significantly, and they successfully recovered in the booting stage and broke out in panicles. We also illustrated the incubation location of B. glumae by presenting the infection pattern in the seedling and tillering stage of rice. Under fluorescent microscopy, the gfp‐labelled pathogens were first found in the vascular bundle of lateral roots, taproots and injured cells, then they were observed in the root hairs, epidermal cells and main root cap. The pathogens in the vascular bundle laterally dispersed towards the epidermal cells. By spray application of a bacterial suspension, the pathogens landed on the leaf sheaths and leaves, colonized in the epidermal hairs and leaf hairs, or invaded into the cells through the stomas. At the same time, the pathogens from the vascular bundle of the roots spread into the vascular bundle of leaf sheaths and leaves, which caused the leaves to curl and wilt, beginning from the tip.  相似文献   

5.
This study aimed to evaluate the effect of silicon (Si) and its interaction with fungicide on the management of sorghum anthracnose. The experiments were carried out in Si‐deficient soil in the 2008/2009 and 2009/2010 growing seasons in a randomized, complete block, split‐split plot design with four replications. Calcium silicate (CS) and lime (L), at the rates of 6 and 5 ton/ha, respectively, were randomly assigned to the main plot. Two sorghum lines, BR‐008 (resistant) and BR‐009 (susceptible), were assigned to the split plots. The split‐split plots corresponded to with or without the fungicide Opera® (epoxiconazole + pyraclostrobin). The residual effect of CS and L from the 2008/2009 growing season was evaluated in the 2009/2010 growing season. For the 2008/2009 growing season, the area under anthracnose progress curve (AUAPC) was reduced by 39 and 42% for lines BR‐008 and BR‐009, respectively, with the application of CS. In the presence of the fungicide, the AUAPC was reduced by 35 and 42% for the CS and L treatments, respectively. Calcium silicate with and without fungicide contributed to decreasing the AUAPC by 44 and 37%, respectively. The fungicide spray decreased the AUAPC by 50 and 39% for lines BR‐008 and BR‐009, respectively. Without fungicide, the AUAPC decreased by 88% for line BR‐008 compared with line BR‐009; however, with fungicide, the reduction reached 90%. The Si leaf tissue concentration significantly increased with the CS application (5.9 g/kg) compared with the L application (0.3 g/kg), regardless of the sorghum line. The yield increased by 0.6 ton/ha with the CS compared to the L application. The fungicide increased yield by 0.48 ton/ha compared with the non‐fungicide spray treatment. The residual effect of CS in the soil increased Si leaf tissue concentration and yield as well as reduced the intensity of anthracnose in the 2009/2010 growing season.  相似文献   

6.
One hundred and eighty isolates of Rhizoctonia solani AG1‐IA, the causal agent of rice sheath blight, were obtained from six locations in southern China. The genetic structure of R. solani isolates was investigated using random amplified polymorphic DNA (RAPD) markers, and a considerable genetic variation among R. solani isolates was observed. Most of the genetic diversity was distributed within populations, rather than among them. The distribution pattern of the genetic variation of R. solani appears to be the result of high gene flow (Nm) and low‐genetic differentiation among populations. The aggressiveness of R. solani was visually assessed by rice seedlings of five different cultivars in the glasshouse. All isolates tested were found to induce significantly different levels of disease severity, reflecting considerable variation in aggressiveness. The isolates were divided into highly virulent, moderately virulent and weakly virulent groups, and the moderately virulent isolates were dominant in R. solani population. No significant correlation was observed among the genetic similarity, pathogenic aggressiveness and geographical origins of the isolates. Information obtained from this study may be useful for breeding for improved resistance to sheath blight.  相似文献   

7.
Sheath blight caused by Rhizoctonia solani Kühn is one of the important diseases of rice, resulting in heavy yield loss in rice every year. No rice line resistant to sheath blight has been identified till date. However, in some rice lines a high degree of resistance to R. solani has been observed. An indica rice line, Tetep, is a well documented source of durable and broad spectrum resistance to rice blast as well as quantitative resistance to sheath blight. The present study identified genetic loci for quantitative resistance to sheath blight in rice line Tetep. A mapping population consisting of 127 recombinant inbred lines derived from a cross between rice cultivars HP2216 (susceptible) and Tetep (resistant to sheath blight) was evaluated for sheath blight resistance and other agronomic traits for 4 years across three locations. Based on sheath blight phenotypes and genetic map with 126 evenly distributed molecular markers, a quantitative trait loci (QTLs) contributing to sheath blight resistance was identified on long arm of chromosome 11. Two QTL mapping approaches i.e., single marker analysis and composite interval mapping in multi environments were used to identify QTLs for sheath blight resistance and agronomical traits. The QTL qSBR11-1 for sheath blight resistance was identified between the marker interval RM1233 (26.45 Mb) to sbq33 (28.35 Mb) on chromosome 11. This region was further narrowed down to marker interval K39516 to sbq33 (~0.85 Mb) and a total of 154 genes were predicted including 11 tandem repeats of chitinase genes which may be responsible for sheath blight resistance in rice line Tetep. A set of 96 varieties and a F2 population were used for validation of markers linked to the QTL region. The results indicate that there is very high genetic variation among varieties at this locus, which can serve as a starting point for allele mining of sheath blight resistance.  相似文献   

8.
Thirty Alternaria brassicae (Berk.) Sacc. isolates from diverse geographical locations of India were studied for pathogenic variability on seed, cotyledon and true leaves of Brassica species. Seed germination was reduced maximum by isolate BAB‐39 in Brassica juncea cultivar Varuna (22.1%), Brassica rapa var. Toria cultivar PT‐303 (12%), Brassica carinata cultivar Kiran (12%), Brassica napus cultivar GSL‐1 (11%) and tolerant source of B. juncea genotype PHR‐2 (7%), although least by isolate BAB‐49. Maximum lesion size on leaf was recorded in B. juncea cultivar Rohini (11.2, 16.5 and 16.8 mm) with isolates BAB‐09 (Pantnagar), BAB‐19 (Bharatpur) and BAB‐39 (Kangra), respectively, and categorized as highly virulent, while minimum lesion size of 3.2, 3.7 and 3.8 mm was observed with isolates BAB‐47 (Tonk), BAB 49 (Jobner) and BAB 04 (Kamroop), respectively, considered the weak isolates. On B. alba, BAB‐09, BAB‐19 and BAB‐39 isolates caused maximum lesion size of 3.7, 3.8 and 3.9 mm, respectively, even though it showed maximum tolerance. In both seed and cotyledon inoculation method, the per cent Alternaria blight severity above 80% was observed with isolate of BAB‐39 (91.5%), BAB‐19 (89.0%), BAB‐09 (85.5%) and least in isolate BAB‐49 (34.0%). Brassica seed, cotyledon and leaf showed the similar positive response for categorizing A. brassicae isolates as virulent and avirulent. This information could be used to the development and assessment of resistant brassica germplasm, especially with A. brassicae populations exhibiting increased virulence.  相似文献   

9.
Migrations or introduction of new genotypes of Phytophthora infestans to a specific region imposes a different perspective for potato production. During 2009–2010, a late blight epidemic affected the Northeastern United States, which quickly spread through several states. The epidemic was characterized by the appearance of a new genotype of P. infestans designated US‐22, which was isolated from tomato and potato. Potato tubers are an essential component of late blight epidemics where the pathogen cannot overwinter on Solanaceous plants. Six potato cultivars were inoculated with 12 isolates of P. infestans (five different genotypes), including isolates of the genotype US‐22. Tuber blight development was characterized in terms of tissue darkening expressed as area under the disease progress curve values and lenticel infection. The responses indicated that US‐8 was more aggressive than US‐22, but US‐22 isolates obtained from potato were more aggressive on potato than those acquired from tomato. Tuber periderm responses to infection were limited, yet US‐8 isolates infected the periderm more often than US‐22 isolates. There were significant differences among the cultivars tested but cv. Jacqueline Lee was the most resistant overall. Although isolates of P. infestans genotype US‐22 were less aggressive in comparison with US‐8 isolates, US‐22 isolates still infected potato tubers and were as aggressive us US‐8 isolates on some cultivars. Management of late blight caused by isolates of US‐22 through host resistance may be feasible but imposes a different set of criteria for consideration from those that US‐8 imposed.  相似文献   

10.
Brown spot, caused by the fungus Bipolaris oryzae, is one of the most destructive diseases of rice. This study investigated the effect of zinc rates on the development of brown spot in rice. Rice plants (cv. ‘Metica‐1′) were grown in hydroponic culture amended with Zn rates (applied as ZnSO4.7H2O) of 0, 0.5, 1, 2 and 4 μm and inoculated with B. oryzae. The foliar concentration of Zn was determined. Leaf samples were assessed for disease severity, and then, area under brown spot progress curve (AUBSPC) was calculated. The relationship between Zn concentrations on leaf tissues and the rates of this micronutrient was best described by a positive linear regression model, while the relationship between the Zn rates and the AUBSPC was best described with a positive quadratic regression model. The correlation between Zn concentrations on leaf tissues and AUBSPC was positive and significant (r = 0.68, P < 0.05). The results from this study showed that high foliar concentration of Zn was associated with increasing rice susceptibility to brown spot.  相似文献   

11.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

12.
The fine structure of the salivary sheaths in plant tissues can provide important information on homopteran probing and ingestion behaviors. Salivary sheaths secreted by the brown planthopper (BPH), Nilaparvata lugens (Stål) (Homoptera: Delphacidae), and their tissue pathway were investigated using light, scanning electron, and transmission electron microscopy. About half of the salivary flanges on the surface of the food substrate were connected with internal salivary sheaths. Only 43% of the salivary sheaths showed side branches. Many sculpture‐like protuberances and small cavities had been formed on the outer surface of the salivary sheath, but the sheath lumen circumferences were sealed. Brown planthoppers showed a preference for probing and leaving salivary sheaths in the susceptible rice variety TN1 rather than in the resistant variety B5 during the first 2 days of the experiments. The salivary sheaths in rice tissues reached the inner tissue layer of the leaf sheaths and stems, but were mostly observed to end in the first and second layer of the leaf sheaths. Brown planthoppers also preferred to probe into the thick segment of the outer leaf sheath. After ingestion by the insect, the cytoplasm in both phloem and companion cells degraded and the main organelles were lost. Numerous small vesicles were found in most of the phloem cells, but cell walls remained intact. Large numbers of symbiont‐like structures were observed inside the salivary sheath lumen. These results indicated that BPH has complicated feeding behaviors, which warrants further investigation.  相似文献   

13.
Iron toxicity is recognised as the most widely distributed nutritional disorder in lowland and irrigated rice, derived from the excessive amounts of ferrous ions generated by the reduction of iron oxides in flooded soils. Rice cultivars with variable degrees of tolerance to iron toxicity have been developed, and cultural practices such as water management and fertilisation can be used to reduce its negative impact. However, because of the complex nature of iron toxicity, few physiological data concerning tolerance mechanisms to excess iron in field conditions are available. To analyse the physiological responses of rice to iron excess in field conditions, two rice cultivars with distinct tolerance to iron toxicity [BR‐IRGA 409 (susceptible) and IRGA 420 (tolerant)] were grown in two areas, with a well‐established history of iron toxicity (in Camaquã, RS, Brazil) and without iron toxicity (in Cachoeirinha, RS, Brazil). Plants from the susceptible cultivar grown in the iron‐toxic site showed lower levels of chlorophylls and soluble proteins (together with higher carbonyl levels) indicating photooxidative and oxidative damage. The toxic effects observed were because of the accumulation of high levels of iron and not because of any indirectly induced shoot deficiency of other nutrients. Higher activities of antioxidative enzymes were also observed in leaves of plants from the susceptible cultivar only in the iron‐toxic site, probably as a result of oxidative stress rather than because of specific involvement in a tolerance mechanism. There was no difference between cultivars in iron accumulation in the symplastic and apoplastic space of leaves, with both cultivars accumulating 85–90% of total leaf iron in the symplast. However, susceptible plants accumulated higher levels of iron in low‐molecular‐mass fractions than tolerant plants. The accumulation of iron in the low‐molecular‐mass fraction probably has a direct influence on iron toxicity, and the adaptive strategy of tolerant plants may rely on their capacity to buffer the iron amounts present in the low mass fraction, a new parameter to be considered when evaluating tolerance to iron excess in field‐cultivated rice plants.  相似文献   

14.
Twenty‐two strains of Pseudomonas fluorescens isolated from the rhizosphere soil of nine plant species were screened in vitro for their inhibitory effect on the mycelial growth of the rice sheath blight fungus, Rhizoctonia solani. Of the 22 strains, two promising strains (Pf1 and FP7) were assessed for their effect on seedling vigour and their ability to promote growth in vitro of four cultivars of rice. Both bacterial strains induced systemic resistance in rice cv. IR 50, which is susceptible to sheath blight. After inoculation of the sheaths with the pathogen, Pseudomonas‐treated plants showed an increase in chitinase activity significantly higher than that of untreated control plants. A twofold increase in chitinase activity occurred 2 days after inoculation of plants with the pathogen. Western blot analysis of chitinase indicated the expression of 28 and 38 kDa proteins in rice sheaths against R. solani. Increased induction of the pathogenesis‐related chitinase isoform in Pseudomonas‐treated rice in response to R. solani infection indicates that the induced chitinase has a definite role in suppressing disease development.  相似文献   

15.
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae [(Ishiyama) Swings et al. 1990] (Xoo), is a major rice disease of the second crop season in Taiwan. A total of 88 Xoo strains collected from 10 major rice cultivating areas in Taiwan from 1986, 1997, 2000, 2004, and 2011 were characterized by repetitive‐element PCR (REP‐PCR) fingerprinting and virulence analyses. Among the five genetic clusters identified by the pJEL1/pJEL2 (IS1112‐based) and REP1R‐Dt/REP2‐D [repetitive extragenic palindromic (REP)‐based] primer sets, clusters A, C and D contained Xoo strains from geographically distant regions, which suggests a high frequency of Xoo dispersal in Taiwan. The 88 Xoo strains were evaluated by inoculations on IRBB near‐isogenic lines and five Taiwan rice cultivars. A subset of 45 moderately or highly virulent strains were classified into 15 pathotypes by their compatible or incompatible reactions on IR24 and 12 IRBB near‐isogenic lines, each containing a single resistance gene. Analysis of molecular haplotypes and pathotypes revealed a partial relationship. IRBB5, IRBB21 and IRBB4 were incompatible with 96%, 96% and 73% of the strains, so xa5, Xa21 and Xa4 can recognize most of the Xoo strains in Taiwan and elicit resistance. In contrast, IRBB3 (Xa3), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13) and IRBB14 (Xa14) were susceptible to almost all of the 45 Xoo strains. Inoculation trials revealed significant differences in the susceptibility of five Taiwan cultivars to Xoo (from high to low susceptibility: Taichung Sen 10 >  IR24, Taichung Native 1 >  Taichung 192, Taikeng 9, Tainan 11). This study provides useful information for resistance breeding and the development of disease management strategies against bacterial blight disease of rice.  相似文献   

16.
Okinawa, the only subtropical area in Japan with numerous island ecosystems, is expected to have diverse microbial resources. Recently, we reported the construction of a culture filtrate library with microbes originally isolated from soils in Okinawa, including the Yaeyama Archipelago, and validated its phylogenetic diversity. In the present study, we investigated the inhibitory effect of the cell extract (CE) from microbial isolate 3–45 against Magnaporthe oryzae in rice (Oryza sativa). Abnormal appressorium formation by M. oryzae was induced in the presence of the CE from isolate 3–45. Additionally, melanization of appressoria was inhibited in the presence of CE from isolate 3–45. Sequence analysis of the 16S rDNA region of isolate 3–45 indicated that it shared similarities with Streptomyces erythrochromogenes. When rice leaves were inoculated with M. oryzae in the presence of CE from isolate 3–45, blast lesion formation was inhibited compared to leaves treated with M. oryzae in the absence of CE from isolate 3–45. In addition, M. oryzae infective activity was significantly inhibited in rice leaf sheaths treated with CE from isolate 3–45. Furthermore, abnormal appressorium formation was observed in the presence of heat‐treated CE from isolate 3–45. These results suggest that CE from isolate 3–45 can protect rice from blast disease caused by M. oryzae. Further studies are required to identify the active compounds present in 3–45‐CE and to clarify its mechanism of inhibition in full detail. The present study on isolate 3–45 might contribute to the development of a new fungicide for controlling rice blast disease caused by M. oryzae.  相似文献   

17.
The major QTL-qSB-9Tq conferring partial resistance to rice (Oryza sativa L.) sheath blight (Rhizoctonia solani Kühn) has been verified on chromosome 9 of the indica rice cultivar, Teqing. In this study, the prospect of this QTL utilized in molecular breeding program of japonica rice for sheath blight resistance was investigated. Most of the japonica rice cultivars showed lower level of sheath blight resistance than the indica rice cultivars. At the corresponding site of qSB-9Tq, nine typical japonica rice culfivars from different ecological regions or countries proved to possess the susceptible allele(s). Introgression of qSB-9Tq into these cultivars enhanced their resistance level by decreasing sheath blight score of 1.0 (0.5-1.3), which indicated that qSB-9Tq had a large potential in strengthening the resistance of japonica rice to sheath blight. The use of the three molecular markers, which were polymorphic between Teqing and many japonica rice cultivars, promotes the application of qSB-9Tq in a concrete molecular breeding program.  相似文献   

18.
In a survey performed in Chania and Aetoloacarnania, Greece in years 2013–2014, fungal isolates causing twig and shoot blight and branch canker of citrus trees were morphologically characterized and identified by multiple gene sequence analysis. By sequencing the ITS‐5.8S rRNA, the elongation factor 1‐α (EF1‐α), the β‐tubulin and the RNA polymerase II subunit (Rpb2) genes, the isolates examined were associated with Diaporthe foeniculina (six isolates) and Neofusicoccum parvum (one isolate). All six D. foeniculina isolates showed slow colony growth rates (7.4 ± 3.2 mm/day), while the N. parvum isolate exhibited fast growth (41.6 mm/day). Koch's criteria were met after re‐isolation of D. foeniculina isolates from all inoculated Citrus spp. and N. parvum from inoculated C. reticulata “Ortanique” and after having developed symptoms similar to those detected on shoots and branches collected from citrus fields. Based on lesion length on detached C. medica “Lia Kritis” shoots, N. parvum caused long necrotic lesions (58 mm in length) in comparison with a length of 12–21 mm lesions caused by D. foeniculina isolates. Pathogenicity trials on nine Citrus spp., which had been inoculated with D. foeniculina and N. parvum, revealed different levels of susceptibility, indicating a host‐dependent infection effect, with Poncirus trifoliate × C. paradisi (“Citrumelo Swingle”) being the most resistant citrus genotype. Lack of host specificity suggests that their pathogen–host association could be attributed to ecological rather to co‐evolutionary factors. This work represents the first report, accompanied with pathogenicity tests, on botryosphaeriaceous and diaporthaceous pathogens associated with twig and shoot blight and branch canker of citrus in Greece.  相似文献   

19.
Late blight of potato is considered to be the most devastating problem causing severe yield losses in potato worldwide. Among the different management strategies, the use of resistant cultivars is the most viable option, but the non‐availability of enough quantity of quality seed materials of resistant cultivars forces the farmers to grow susceptible cultivars with proper fungicide scheduling. Therefore, in the present study, chemical control using fungicide has been attempted with newer molecules in the susceptible cultivar along with a resistant cultivar as a positive control. All the tested fungicides were found safe, and no phytotoxicity was observed with any chemical at the applied rate. In resistant cultivar, no late blight was appeared in both the years, whereas maximum AUDPC was observed in the untreated control (276.3) and minimum (41.7) in mancozeb‐cymoxanil + mancozeb based scheduling which was found on par with chlorothalonil‐famoxadone + cymoxanil (51.3) and chlorothalonil‐ametoctradin + dimethomorph (53.5) based scheduling. Among the treatments, resistant cultivar, Kufri Girdhari followed by chlorothalonil‐ametoctradin + dimethomorph and mancozeb‐cymoxanil + mancozeb based fungicidal scheduling were proven as the best treatments for both the crop seasons resulting in the highest yield parameters. The disease severity showed a strong negative correlation with the tuber yield of potatoes in both the years. Based on overall observations including BC ratio, it can be concluded that, wherever seed material of resistant cultivar is available farmers should grow the same or else with susceptible cultivars the fungicidal scheduling based on mancozeb‐cymoxanil + mancozeb or chlorothalonil‐ametoctradin + dimethomorph can be followed to obtain the maximum returns with effective management of late blight at the southern hills of India.  相似文献   

20.
The hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M. oryzae strain, which generated a unique resistance lesion with a brown ring (halo) around the brown fungal penetration site. Inoculation analysis using a plant harboring Pit but lacking an enzyme that catalyzes tryptamine to serotonin showed that high accumulation of the oxidized form of serotonin was the cause of the browning at the halo and penetration site. Our analysis of the halo browning process in the rice leaf revealed that abscisic acid enhanced biosynthesis of serotonin under light conditions, and serotonin changed to the oxidized form via hydrogen peroxide produced by light. The dramatic increase in serotonin, which has a high antioxidant activity, suppressed leaf damage outside the halo, blocked expansion of the browning area and attenuated inhibition of plant growth. These results suggest that serotonin helps to reduce biotic stress in the plant by acting as a scavenger of oxygen radicals to protect uninfected tissues from oxidative damage caused by the HR. The deposition of its oxide at the HR lesion is observed as lesion browning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号