首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
  • Induced systemic resistance (ISR) is one of the indirect mechanisms of growth promotion exerted by plant growth‐promoting bacteria, and can be mediated by ethylene (ET). We assessed ET production and the expression of related genes in the Azospirillum–strawberry plant interaction.
  • Ethylene production was evaluated by gas chromatography in plants inoculated or not with A. brasilense REC3. Also, plants were treated with AgNO3, an inhibitor of ET biosynthesis; with 1‐aminocyclopropane‐1‐carboxylic acid (ACC), a precursor of ET biosynthesis; and with indole acetic acid (IAA). Plant dry biomass and the growth index were determined to assess the growth‐promoting effect of A. brasilense REC3 in strawberry plants. Quantitative real time PCR (qRT‐PCR) was performed to analyse relative expression of the genes Faetr1, Faers1 and Faein4, which encode ET receptors; Factr1 and Faein2, involved in the ET signalling pathway; Faacs1 encoding ACC synthase; Faaco1 encoding ACC oxidase; and Faaux1 and Faami1 for IAA synthesis enzymes.
  • Results showed that ET acts as a rapid and transient signal in the first 12 h post‐treatment. A. brasilense REC3‐inoculated plants had a significantly higher growth index compared to control plants. Modulation of the genes Faetr1, Faers1, Faein4, Factr1, Faein2 and Faaco1 indicated activation of ET synthesis and signalling pathways. The up‐regulation of Faaux1 and Faami1 involved in IAA synthesis suggested that inoculation with A. brasilense REC3 induces production of this auxin, modulating ET signalling.
  • Ethylene production and up‐regulation of genes associated with ET signalling in strawberry plants inoculated with A. brasilense REC3 support the priming activation characteristic of ISR. This type of resistance and the activation of systemic acquired resistance previously observed in this interaction indicate that both are present in strawberry plants, could act synergistically and increase protection against pathogens.
  相似文献   

2.
3.
This study examined the effect of ASD strain (Aspergillus flavipes), isolated from continuous cropping soil for pepper and named by the sampling position, on soil microflora and soil enzymes in rooting zone soil of healthy and diseased (Phytophthora capsici) pepper plants. Results showed that the ASD strain could significantly reduce the number of bacteria and actinomycetes, with a significant increase in fungi in the rhizosphere soil of both healthy and diseased plants. With increasing colonization time of the ASD strain, the number of bacteria and actinomycetes decreased initially and then increased gradually, while the number of fungi was first increased significantly and later decreased slowly. The soil enzyme activities of urease, acid phosphatase, invertase and dehydrogenase were significantly increased by the ASD strain, while the activity of catalase was not significantly increased. As time from inoculation with the ASD strain increased, the activities of various enzymes were higher than controls. Maximum enzyme activities were found on the tenth day after ADS inoculation. The response of soil enzyme activities affected by the ASD strain was as follows: urease > dehydrogenase > invertase > acid phosphatase > catalase. These results suggest that the biocontrol of ASD strain could improve the micro ecology of rhizosphere soil.  相似文献   

4.
5.
6.
Downy mildew, caused by the oomycete pathogen Peronospora belbahrii, is a devastating foliar disease of basil in the United States and worldwide. Currently there are very few chemistries or organic choices registered to control this disease. In this study, two systemic acquired resistance (SAR) inducers, acibenzolar‐S‐methyl (ASM) and β‐aminobutyric acid (BABA), were evaluated for their in vitro effects on the pathogen, for their potential to control basil downy mildew in greenhouses, and for changes in peroxidase activity in basil plants treated with these two SAR inducers. No significant inhibition of sporangial germination was detected in water agar amended with ASM at concentrations lower than 100 mg/l or with BABA at concentrations lower than 500 mg/l. Efficacy of ASM and BABA in greenhouses varied depending on the rate, method and timing of application. The area under the disease progress curve (AUDPC) of disease severity was significantly reduced compared to the non‐treated control when ASM was sprayed (in all experiments) or drenched (in one out of two experiments) pre‐, or pre‐ + post‐inoculation at rates of 25–400 mg/l. Three weekly post‐inoculation sprays of ASM at the rate of 50 mg/l reduced AUDPC by 93.0 and 47.2% when started 3 and 7 days after inoculation (DAI), respectively. The AUDPC of disease severity was also significantly reduced when BABA was sprayed pre‐ + post‐inoculation at rates of 125–500 mg/l. According to the prediction using a log‐logistic function, 50% maximum disease protection was achieved at a concentration of 27.5 mg/l of ASM. Basil plants treated with these two SAR inducers and challenged with the pathogen showed significantly higher peroxidase activity than the non‐treated control at 8 DAI. Temporally, the highest activity of peroxidase was detected at 8 DAI, decreased at 15 DAI and waned further at 23 DAI.  相似文献   

7.
The aim of this study was to evaluate the potentiality of three compatible rhizosphere microbes, viz. fluorescent Pseudomonas aeruginosa (PHU094), Trichoderma harzianum (THU0816) and Mesorhizobium sp. (RL091), in community to mobilise antioxidant mechanisms in chickpea under the challenge of Sclerotium rolfsii. The microbes were applied as seed treatment in different combinations in two sets and the pathogen was inoculated in one of the sets after 3 weeks of sowing. A comparative study was conducted on the effect of the microbial combinations on host antioxidant mechanisms between the two sets. In pathogen challenged plants host defence responses included higher accumulation of hydrogen peroxide (H2O2) at petiolar and interveinal regions of leaf and high activities of catalase (CAT), glutathione reductase (GR) and guaiacol peroxidase (GPx) compared to unchallenged plants. The antioxidant enzyme activities increased 1.8‐3.3 and 1.9‐3.1 folds at 48 and 72 h, respectively, in the triple microbe treated challenged plants compared to unchallenged ones. Although, ascorbate peroxidase (APX) activity was significantly low, ascorbic acid (AA) and chitinase accumulation was high in the pathogen challenged plants. Antioxidant flavonols associated with host defence namely myricetin, quercetin and kaempferol also accumulated in high amounts in pathogen challenged plants. Among the microbial treatments, the triple microbe combination induced the highest response in all parameters as compared to dual or single application of the same microbes. The triple microbe consortium modulated the chickpea antioxidant mechanisms more efficiently and modulation of oxidative stress was directly correlated with lower plant mortality, thus demonstrating the synergistic behaviour of the microbes in protecting chickpea from the pathogen.  相似文献   

8.
A wheat endophytic bacterium (Pseudomonas aeruginosa PW09) was evaluated for its ability to trigger an induced systemic resistance response in cucumber against biotic and abiotic stresses. PW09 was applied to cucumber seeds, and the seedlings were subjected to Sclerotium rolfsii infection and NaCl (150 mm ). The role of PW09 was evaluated in alleviating the stresses by assessing plant mortality due to S. rolfsii infection and biomass accumulation under NaCl stress as well as at the physiological level through phenylpropanoid metabolism, antioxidant activities and proline accumulation. The endophyte reduced seedling mortality by 60% and increased biomass accumulation significantly under S. rolfsii (7%) and NaCl (18%) stresses, respectively, compared with endophyte‐untreated seedlings. Application of PW09 also induced higher accumulation of proline (1.3‐ and 1.4‐fold) and total phenolics (1.2‐ and 1.1‐fold) and activities of polyphenol oxidase (4.3‐ and 1.5‐fold), phenylalanine ammonia lyase (1.29‐ and 1.27‐fold) and superoxide dismutase (2.5‐ and 1.39‐fold) under S. rolfsii and NaCl stresses, indicating the ability of the wheat endophyte PW09 in alleviating both biotic and abiotic stresses in cucumber.  相似文献   

9.
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time‐resolved automated disease phenotyping pipeline enabling high‐throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide‐binding site leucine‐rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip‐0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time‐resolved image‐based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.  相似文献   

10.
The breeding of plantation forestry trees for the possible afforestation of marginal land would be one approach to addressing global warming issues. Here, we developed novel transgenic Eucalyptus trees (Eucalyptus camaldulensis Dehnh.) harbouring an RNA‐Binding‐Protein (McRBP) gene derived from a halophyte plant, common ice plant (Mesembryanthemum crystallinum L.). We conducted screened‐house trials of the transgenic Eucalyptus using two different stringency salinity stress conditions to evaluate the plants’ acute and chronic salt stress tolerances. Treatment with 400 mM NaCl, as the high‐stringency salinity stress, resulted in soil electrical conductivity (EC) levels >20 mS/cm within 4 weeks. With the 400 mM NaCl treatment, >70% of the transgenic plants were intact, whereas >40% of the non‐transgenic plants were withered. Treatment with 70 mM NaCl, as the moderate‐stringency salinity stress, resulted in soil EC levels of approx. 9 mS/cm after 2 months, and these salinity levels were maintained for the next 4 months. All plants regardless of transgenic or non‐transgenic status survived the 70 mM NaCl treatment, but after 6‐month treatment the transgenic plants showed significantly higher growth and quantum yield of photosynthesis levels compared to the non‐transgenic plants. In addition, the salt accumulation in the leaves of the transgenic plants was 30% lower than that of non‐transgenic plants after 15‐week moderate salt stress treatment. There results suggest that McRBP expression in the transgenic Eucalyptus enhances their salt tolerance both acutely and chronically.  相似文献   

11.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

12.
13.
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   

14.
Biological control approaches such as seeding and augmentation releases of populations of natural enemies mostly rely on the indoor production of predator or parasitoid species, often with the use of alternative prey/host species. In this study, we investigated several development parameters of four egg parasitoid species: Ooencyrtus fecundus, O. near fecundus, O. pityocampae and O. telenomicida, and compared their performance on their natural host, the variegated caper bug (CB) Stenozygum coloratum, and on an alternative, factitious host, the silk moth (SM) Bombyx mori. Survival was higher and development duration shorter in CB eggs, making the CB a better host for these congeners. However, adult longevity was generally longer for individuals that developed in SM eggs. Moreover, O. fecundus and O. pityocampae females that had developed in SM eggs displayed higher fecundity than all other female/host combinations. Survival also varied according to the age of the SM eggs: parasitoid survival rates were significantly higher in 9‐ to 12‐month‐old (post‐diapausing) eggs than in young (about 1 month old) ones. These results were probably influenced by differences among the egg sizes of the studied hosts. The number of non‐laying females and self‐superparasitism rates were exceptionally high in O. near fecundus. These findings suggest that SM eggs, and especially those which are being utilized after a long storage, could serve for mass rearing of the studied Ooencyrtus spp.  相似文献   

15.
16.
The aim of this work was to study the antagonist effect of two Rhizobium strains Pch Azm and Pch S.Nsir2 to Rhizoctonia solani and for an evaluation of the relative impact of rhizobia on the expression of the plant's defence response against Rhizoctonia. First, these strains reduced fungal growth observed in vitro using the same or separately Petri dishes. Moreover, these isolates led to reduced chickpea infection by R. solani, resulting from the direct effect of rhizobia on pathogens and possible induced resistance in chickpea. Concomitantly, reduction in infection was accompanied by enhanced level of defence‐related enzymes, phenylalanine ammonia lyase (PAL) and peroxidase (POX). An increased level of phenol content was recorded in the roots of bacterized plants grown in the presence of pathogen. The results promise the use of rhizobia for protection of chickpea against R. solani.  相似文献   

17.
Of 70 micro‐organisms (fungi, bacteria and actinomycetes) isolated from soil using vegetable tissue baits, 16 produced substances in culture fluids capable of preventing the development of blast caused by Magnaporthe oryzae on rice leaves with little or no inhibitory effect on the conidial germination of the pathogen. Isolate KS‐F14, which secreted substances capable of activating resistance in untreated leaves, was selected and identified as Fusarium solani. The resistance‐inducing substances were effective at pH values ranging from 5 to 10 and were stable under high temperatures, maintaining approximately the same level of activity even after autoclaving for 20 min. After application, the activated resistance in rice leaves persisted for 14 days. The polar solvent extracts of freeze‐dried KS‐F14 secretions were effective in activating resistance against M. oryzae in rice plants. The non‐polar solvent extracts were also effective, albeit not as effective as the polar solvent extracts, indicating that although the majority of the secreted resistance‐inducing compounds are hydrophilic, some of the compounds are hydrophobic. Treating secretions with cation or anion exchange resins only partially reduced their resistance‐inducing ability, suggesting that the resistance‐inducing components include both charged and non‐charged compounds. The resistance‐inducing compounds produced by F. solani have the potential to be developed into a commercial product for the control of rice blast and possibly other plant diseases.  相似文献   

18.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

19.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号