首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
Seventy‐five isolates of Fusarium oxysporum f.sp. cepae, the causal agent of basal plate rot on onion, were obtained from seven provinces of Turkey. The isolates were characterized by vegetative compatibility grouping (VCGs) and restriction fragment length polymorphism (RFLP) analysis of the nuclear ribosomal DNA intergenic spacer region (IGS). Forty‐eight vegetative compatibility groups were found, each containing a single isolate. Only one isolate formed strong heterokaryons with the reference isolates of VCG 0423. Five isolates were heterokaryon self‐incompatible. Restriction fragment analysis with six different enzymes revealed 13 IGS types among 75 F. oxysporum isolates from Turkey as well as 16 reference isolates from Colorado, USA. The majority of single‐member VCGs produced identical RFLP banding patterns with minor deviations, considerably different from those of the reference VCG isolates. These results suggested that isolates of F. oxysporum f.sp. cepae in Turkey derived from distinct clonal lineages and mutations at one or more vegetative compatibility loci restrict heterokaryon formation.  相似文献   

2.
Fusarium oxysporum (Schlechtend.: Fr.) f. sp. melongenae (Fomg) recovered from symptomatic eggplants from five eggplant‐growing areas in Turkey, including the south, west, north‐west, north and south‐east regions. The objective of this study was to investigate the genetic diversity of the Fomg isolates from different geographical location by pathogenicity and VCG tests. Three hundred and seventy‐four Fomg isolates were classified as highly virulent, virulent, moderately virulent and low virulent through pathogenicity assays. No correlation was observed between virulence of Fomg isolates and their locations. The nitrate non‐utilizing mutants (nit) were generated as nit1, nit3 and NitM, based on phenotyping of Fomg growth characteristics of the Fomg isolates on diagnostic media with various sources of nitrogen. The majority of nit mutants (39.4%) recovered were nit1 from minimal medium (MM) containing of 2.0% potassium chlorate (MMC). The most of Fomg isolates were identified as heterokaryon self‐compatible (HSC) based on their ability to form a stable heterokaryon, while four isolates were classified as heterokaryon self‐incompatible (HSI). A large amount of Fomg isolates were vegetatively compatible and assigned as members of the same VCG, whereas nit mutants of 10 Fomg isolates that did not complement with tester strains only paired by themselves (HSC), these isolates were termed vegetative incompatible (vic). The complementation of 33 isolates with tester strains was slow and quite weak, but not paired with themselves even though they are HSC. About 96.3% of the Fomg isolates were assigned to VCG 0320, while the remaining 3.7% were classified as vegetative incompatible group.  相似文献   

3.
Isolates of Colletotrichum gloeosporioides obtained from yam‐based cropping systems in Nigeria, previously characterized on the basis of morphology, virulence and rDNA internal transcribed spacer (ITS) sequence variation were further compared for vegetative compatibility (VC). Chlorate‐resistant nitrate non‐utilizing (nit) mutants were generated from the isolates and used in complementation (heterokaryon) tests. Tests of VC between complementary mutants from different isolates indicated the presence of several genotypes within a single field, suggesting limited clonal spread. In some cases, isolates obtained from the same lesion were observed to belong to different vegetative compatibility groups (VCGs). No compatibility was observed between isolates of the highly virulent slow‐growing grey (SGG), the moderately virulent fast‐growing salmon (FGS) and the avirulent/weakly virulent fast‐growing grey (FGG) strains. Forty‐one C. gloeosporioides isolates belonged to 28 VCGs, giving a genotype diversity estimate of 0.68. This diversity confirmed the high variability of the pathogen population as revealed by previous characterization studies, however, a correlation between VCGs and isolate groupings based on morphology and virulence was not found. The finding that an isolate from weed was compatible with yam isolates indicated that transfer of important traits, such as virulence, may take place between isolates from yam and non‐yam hosts. The VCG diversity revealed by this study suggests that in addition to asexual reproduction, sexual reproduction may play an important role in the epidemiology of anthracnose on yam.  相似文献   

4.
Verticillium dahliae is one of the most important pathogens causing Verticillium wilt. We studied the characterisation of the genetic relationship between virulence, vegetative compatibility groups (VCGs) and inter-simple sequence repeat (ISSR). A total of 48 V. dahliae isolates, in which 16 are collected from different cotton growing regions in China and 4 isolates belonged to all known VCGs, are used. Half of them were found highly virulent. Mutants (565) were obtained using the nitrate non-utilising mutant. These mutants were grouped into three VCGs: VCG1 (27 isolates), VCG 2 (14 isolates) and VCG 3 (7 isolates). Use of ISSR indicated two main clusters that were related to VCG and virulence. Genetic diversity lineages were obviously correlated to VCGs and ISSRs according to their geographical origin, virulence and ISSR genetic variation. This study could be useful to design and develop effective management strategies beside for quarantine purposes on Verticillium wilt control.  相似文献   

5.
Forty-four V. dahliae isolates were collected from symptomatic vascular tissues of okra plants each from a different field in eight provinces located in the eastern Mediterranean and western Anatolia regions of Turkey during 2006- 2009. Nitrate-nonutilizing (nit) mutants of V. dahliae from okra were used to determine heterokaryosis and genetic relatedness among isolates. All isolates from okra plants were grouped into two vegetative compatibility groups (VCGs) (1 and 2) and three subgroups as 1A (13.6%, 6/44), 2A (20.5%, 9/44) and 2B (65.9%, 29/44) according to international criteria. Pathogenicity tests were performed on a susceptible local okra (A. esculentus) landrace in greenhouse conditions. All isolates from VCG1A and VCG2B induced defoliation (D) and partial defoliation (PD) symptoms, respectively. Other isolates from VCG2A gave rise to typical leaf chlorosis symptoms without defoliation. The obtained data showed that the virulence level of V. dahliae isolates from okra was related to their VCG belongings. Eighteen okra landraces from diverse geographical origins were screened for resistance to VCG2B and VCG1A of V. dahliae. The results indicated that all landraces were more susceptible to highly virulent VCG1A-D pathotype displaying D or PD symptoms depending on their susceptibility levels with a mean disease severity index of 3.52 than to less virulent VCG2B-PD pathotype of V. dahliae displaying PD and ND symptoms with a mean disease severity index of 2.52. Significant differences were observed among the landraces; however, none of them exhibited a level of resistance. Okra landraces; Çorum, Hatay Has and Şanlıurfa displayed the lowest level of susceptibility or little tolerance to both D and PD pathotypes. VCG2B of PD was prevailing in the surveyed areas and VCG1A of D was the most virulent of the VCGs identified. Introduction of resistant genotypes to Turkish okra germplasm from different sources and breeding new resistant okra cultivars are critical for the sustainability of okra production.  相似文献   

6.
Japanese isolates ofVerticillium dahliae were examined for vegetative compatibility relationships using nitrate-nonutilizing mutants. Four levels of vegetative compatibility were differentiated according to the degree of compatibility between the tester mutants ofnit1 and NitM. Wild-type growth with a complementation line greater than 5 mm wide was defined as “strong reaction (++)”, i.e., compatible. Ten out of 15 isolates showed compatibility and were separated into three groups, provisionally designated as VCGJ1, VCGJ2, and VCGJ3, depending upon their reactions. This method was used to estimate, genetic diversity within a local population ofV. dahliae. Another 12 isolates from Gunma Pref. were paired with tester isolates of the three vegetative compatibility groups proposed. Eight Gunma isolates were assigned to VCGJ1 or VCGJ2. Two isolates were incompatible with all testers. The remaining 2 isolates were self-incompatible. Thus, 18 out of 27 Japanese isolates ofV. dahliae were assigned to VCGs: 8 to VCGJ1, 7 to VCGJ2, and 3 to VCGJ3. VCGJ1 was compatible with both VCGJ2 and VCGJ3, but VCGJ2 and VCGJ3 showed a weak reaction with each other. Japanese isolates ofV. dahliae were thus demonstrated to form a VC group comprising three subgroups.  相似文献   

7.
Maize infected by aflatoxin‐producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro‐ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co‐inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non‐utilizing (nit?) mutants. To determine genetic diversity and distribution of VCGs across agro‐ecological zones, 832 nit? mutants from 52 locations in 11 administrative districts were paired with one self‐complementary nitrate auxotroph tester‐pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro‐ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5 = 0.96) of VCGs were high across all agro‐ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance > 400 km away. The present study identified widely distributed VCGs in Nigeria such as AV0222, AV3279, AV3304 and AV16127, whose atoxigenic members can be deployed for a region‐wide biocontrol of toxigenic isolates to reduce aflatoxin contamination in maize.  相似文献   

8.
Verticillium dahliae race-2 can invade the resistant cultivars of tomato possessing theVe gene. This new race was recently found in several regions in Japan, and 10 isolates ofV. dahliae race-2 from these regions were used in our study. Pathogenicity tests identified these isolates as the tomato pathotype (B). We examined the vegetative compatibility of 8 of these 10 Japanese isolates ofV. dahliae race-2 to estimate their genetic relatedness with the testers of Japanese vegetative compatibility group previously proposed (VCGJ) usingnit mutants. Compatiblenit1 and NitM mutants were obtained from allV. dahliae race-2 isolates. Selected representativenit1 and NitM mutants of eachV. dahliae race-2 isolates were paired with VCGJ testers. All isolates ofV. dahliae race-2 showed a strong reaction with VCGJ2, i.e., tomato pathotype. All isolates ofV. dahliae race-2 except for isolate To22 reacted weakly to VCGJ1 and J3. Japanese isolates ofV. dahliae race-2 were assigned as VCGJ2 and were hence vegetatively closely related with those ofV. dahliae race-1. The origin of Japanese isolates ofV. dahliae race-2 was discussed.  相似文献   

9.
A collection of 24 isolates of Verticillium dahliae and 10 isolates of Verticillium longisporum originating from nine different host plants and from several geographic regions was tested for host specificity on 11 economically important crops such as potato, tomato, strawberry, linseed, three legumes and four Brassica species. In order to reveal host specificity the potential of each isolate to induce disease and affect plant yield was recorded for all isolate–host combinations. The collected data were statistically processed by means of a cluster analysis. As a result, the host range of individual isolates was found to be more dependent on the vegetative compatibility group (VCG) of the isolate than on its original host plant provenance. Twenty‐two out of 24 V. dahliae isolates belonged to either VCG 2B or 4B. VCG 2B isolates showed specificity for legumes, strawberry, potato and linseed, whereas VCG 4B was specifically virulent on potato, strawberry and linseed. Subgroups within VCG 2B and 4B almost lacking any host preference were designated 2B* and 4B*. Three isolates from VCG 2B*, however, severely attacked tomato which is a host outside the authentic host range of VCG 2B. The pathogenicity of V. longisporum isolates was restricted to cruciferous hosts. Conversely, cruciferous plants were not affected by isolates from VCGs 2B and 4B of V. dahliae. This lack of cross‐infectivity of certain subpopulations of V. dahliae and of V. longisporum may be useful in the management of this soil‐borne wilt disease.  相似文献   

10.
We examined the vegetative compatibility of 56 Japanese isolates provisionally assigned to four subgroups ofV. dahliae to estimate the genetic relatedness with testers of the standardized VCGs. Subgroup J1 was assigned to VCG 2A/B as a new category of assignment. Subgroup J2, except isolate Vdt 110, was assigned to VCG 2A, and subgroup J3, except isolate Vdf 1, was assigned to VCG 2B. Isolates Vdf 1 and Vdt 110 were assigned to VCG 2A/B. Subgroup J4 was assigned to two subgroups, VCG 4B for Vde 1 and VCG 4A/B for FY 3 and HR 1. Four isolates were compatible with both VCG 2 and 4. Isolate U56 was compatible with VCG 2A/B and 4A. Isolates of VCG 2A, Vdt 9 and FF1, were compatible with either VCG 4A or 4A/B. One isolate of VCG 2B, Vdp-4, was compatible with VCG 4A. Three isolates of subgroup J2 showed weak reactions with the testers of VCG 4. These isolates may be “bridging strains”. Japanese isolates were composed of two VCGs, 2 and 4, “bridging strains” compatible with these VCGs, and some self-incopatible isolates. Testers of VCG 1 and VCG 3 did not show any reactions with the Japanese isolates.  相似文献   

11.
A collection of 24 isolates of Verticillium dahliae, 11 isolates of V. longisporum and one isolate of V. albo‐atrum originating from different host plants and geographical regions was tested for genetic variability by random amplified polymorphic DNA‐polymerase chain reaction (RAPD–PCR). Based on nine primers, the three Verticillium species could be clearly differentiated. Likewise, this analysis provided a distinct separation of vegetative compatibility groups (VCG) 2B, 4A and 4B of V. dahliae by specific DNA banding patterns. Additionally, V. longisporum was found to segregate into two subgroups with only 88% similarity. This molecular‐genetic approach was used for the analysis of randomly selected Verticillium isolates from a field with high intensity of oilseed rape cultivation (33% in crop rotation). RAPD‐PCR analysis revealed that 95 of 100 isolates tested belonged to V. longisporum and 5 to VCG 2B of V. dahliae. This study demonstrates an adaptation of Verticillium soil populations to a specific cropping history.  相似文献   

12.
《Fungal biology》2014,118(5-6):484-494
The frequency of occurrence of Monilinia fructicola in the Ebro Valley, Spain has increased since its first appearance in 2006, and M. fructicola has displaced Monilinia laxa, the native species which is the main cause of brown rot in peaches in this valley. In order to determine the characteristics that may be related to the displacement, we studied the capacity to generate new genotypic combinations of M. fructicola under laboratory conditions. The morphology and parasitic ability from ten field isolates of M. fructicola and M. laxa collected from three different orchards in the valley, and sampling from five different lesions were studied. Nitrate-non-utilising (nit) mutants were generated in order to test the isolates for vegetative compatibility which was done by assessing their colony growth when cultured singly or in pairs on media that contained different nitrogen sources. For the M. fructicola isolates, five vegetative compatibility groups (VCGs) were identified using the nit mutants and six VCGs were identified when they were grown on potato dextrose agar dishes. In all instances, the vegetatively compatible M. fructicola isolates came mainly from the same orchard. Only one VCG displays the same morphological and competition characteristics. No VCGs were identified among the M. laxa isolates. We did not find any apothecia of M. laxa and M. fructicola isolates in the soil of the three orchards, but we were able to produce apothecia of M. fructicola in the laboratory. Our finding of sexual reproduction and VCGs in the M. fructicola isolates suggests that the genetic variability of M. fructicola could be maintained by sexual and/or parasexual recombination.  相似文献   

13.
Races and vegetative compatibility groups (VCGs) in Greek isolates of Fusarium oxysporum f. sp. melonis(Fom) were characterized. Three races (0, 2 and 1–2) among 12 isolates tested and two VCGs among 19 isolates tested, were identified. Race 1–2 was the most common and race 1 was not detected. One widespread VCG corresponded to a VCG previously reported from Israel (coded 0138), and included seven isolates of races 0 and 1–2. The other VCG, which was unclassified, included four isolates of races 0, 2 and 1–2. The latter VCG was detected only in a specific melon‐growing location of Evros. The remaining eight isolates tested for VCG did not show positive reactions with other isolates, with each other or with the testers of VCGs 0135 or 0138, although they produced complementary mutants. Using two inoculation methods, the local cv. ‘Golden Head’ was found susceptible to all known Fom races, and especially to race 1–2. These results show the presence of more than one VCG and the widespread distribution of the race 1–2, in Greece.  相似文献   

14.
The genetic variation among nine soybean-originating isolates of Colletotrichum truncatum from different Brazilian states was studied. Nitrate non-utilizing (nit) mutants were obtained with potassium chlorate and used to characterize vegetative compatibility reactions, heterokaryosis and RAPD profile. Based on pairings of nit mutants from the different isolates, five vegetative complementation groups (VCG) were identified, and barriers to the formation of heterokaryons were observed among isolates derived from the same geographic area. No complementation was observed among any of the nit mutants recovered from the isolate A, which was designed heterokaryon-self-incompatible. Based on RAPD analysis, a polymorphism was detected among the wild isolate C and their nit1 and NitM mutants. RAPD amplification, with five different primers, also showed polymorphic profiles among Brazilian C. truncatum isolates. Dendrogram analysis resulted in a similarity degree ranging between 0.331 and 0.882 among isolates and identified three RAPD groups. Despite the lack of a correlation between the RAPD analysis and the vegetative compatibility grouping, results demonstrated the potential of VCG analysis to differentiate C. truncatum isolates genotypically similar when compared by RAPD.  相似文献   

15.
Aspergillus flavus, a fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer‐causing secondary metabolite that contaminates food and animal feed globally. Aspergillus flavus has two self/nonself recognition systems, a sexual compatibility system and a vegetative incompatibility system, and both play a role in directing gene flow in populations. Aspergillus flavus reproduces clonally in wild and agricultural settings, but whether a cryptic sexual stage exists in nature is currently unknown. We investigated the distribution of genetic variation in 243 samples collected over 4 years from three common vegetative compatibility groups (VCGs) in Arizona and Texas from cotton using 24 microsatellite loci and the mating type locus (MAT) to assess population structure and potential gene flow among A. flavus VCGs in sympatric populations. All isolates within a VCG had the same mating type with OD02 having MAT1‐2 and both CG136 and MR17 having MAT1‐1. Our results support the hypothesis that these three A. flavus VCGs are genetically isolated. We found high levels of genetic differentiation and no evidence of gene flow between VCGs, including VCGs of opposite mating‐type. Our results suggest that these VCGs diverged before domestication of agricultural hosts (>10 000 yr bp ).  相似文献   

16.
Muirhead CA  Glass NL  Slatkin M 《Genetics》2002,161(2):633-641
Trans-species polymorphism, meaning the presence of alleles in different species that are more similar to each other than they are to alleles in the same species, has been found at loci associated with vegetative incompatibility in filamentous fungi. If individuals differ at one or more of these loci (termed het for heterokaryon), they cannot form stable heterokaryons after vegetative fusion. At the het-c locus in Neurospora crassa and related species there is clear evidence of trans-species polymorphism: three alleles have persisted for approximately 30 million years. We analyze a population genetic model of multilocus vegetative incompatibility and find the conditions under which trans-species polymorphism will occur. In the model, several unlinked loci determine the vegetative compatibility group (VCG) of an individual. Individuals of different VCGs fail to form productive heterokaryons, while those of the same VCG form viable heterokaryons. However, viable heterokaryon formation between individuals of the same VCG results in a loss in fitness, presumably via transfer of infectious agents by hyphal fusion or exploitation by aggressive genotypes. The result is a form of balancing selection on all loci affecting an individual's VCG. We analyze this model by making use of a Markov chain/strong selection, weak mutation (SSWM) approximation. We find that trans-species polymorphism of the type that has been found at the het-c locus is expected to occur only when the appearance of new incompatibility alleles is strongly constrained, because the rate of mutation to such alleles is very low, because the number of possible incompatibility alleles at each locus is restricted, or because the number of incompatibility loci is limited.  相似文献   

17.
Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.  相似文献   

18.
The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.  相似文献   

19.
Intraspecific competition is the basis for biological control of aflatoxins, but there is little understanding of the mechanism(s) by which competing strains inhibit toxin production. Evidence is presented that demonstrates a relationship between strength of the vegetative compatibility reaction and aflatoxin production in Aspergillus flavus and A. parasiticus using the suspended disk culture method. Combining wild-type aflatoxin-producing isolates belonging to different vegetative compatibility groups (VCGs) resulted in a substantial reduction in aflatoxin yield. Pairs of aflatoxin-producing isolates within the same VCG, but showing weak compatibility reactions using complementary nitrate-nonutilizing mutants, also were associated with reduced levels of aflatoxin B1. In contrast, pairings of isolates displaying a strong compatibility reaction typically produced high levels of aflatoxins. These results suggest that interactions between vegetatively compatible wild-type isolates of A. flavus and A. parasiticus are cooperative and result in more aflatoxin B1 than pairings between isolates that are incompatible. Successful hyphal fusions among spore germlings produce a common mycelial network with a larger resource base to support aflatoxin biosynthesis. By comparison, vegetative incompatibility reactions might result in the death of those heterokaryotic cells composed of incompatible nuclei and thereby disrupt the formation of mycelial networks at the expense of aflatoxin biosynthesis. The content of this paper was presented at the 50th Anniversary Meeting of the Mycological Society of Japan, June 3–4, 2006, Chiba, Japan  相似文献   

20.
An isolate ofVerticillum dahliae Vdp-4, pathogenic to both tomato and pepper (tomato-pepper pathotype), was examined for its vegetative compatibility with testers of the Japanese vegetative compatibility group (subgroups J1, J2, and J3). Seven isolates ofV. dahliae from the same field as Vdp-4 in Misato, Nagano Pref. and two isolates from Hokkaido were separately determined as either tomato pathotype (B) or pepper pathotype (C). Isolate 5922 previously reported as tomato-pepper pathotype was also examined. Compatiblenit1 and NitM mutants were obtained from all isolates except for isolates Vdp-3 and Vdt-10. The isolate of tomato-pepper pathotype Vdp-4 showed a strong reaction with VCGJ1 and J3 and was thus assigned to J3. Seven of these isolates showed compatibility and were assigned into three provisional subgroups. The isolate 5922 was self-incompatible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号