首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize is the third most important cereal after wheat and barley in Syria. Maize plants are attacked by several Fusarium species causing mainly stalk and ear rot of maize which poses a major impact worldwide. Identification of Fusarium species is important for disease control and for assessment of exposure risk to mycotoxines. To identify Fusarium species attacking maize in Syria, a total of 32 Fusarium isolates were recovered from maize ears collected from four different geographical regions, mainly from Ghouta surrounding Damascus. Fusarium isolates were identified based on morphology and on partial DNA sequencing of the TEF1‐α and rDNA/ITS genes. The majority (26 of 32) of these isolates was identified as F. verticillioides (subdivided into four groups), whereas three isolates turned out to be Fthapsinum, Fequiseti and Fandiyazi. The remaining three isolates were close to Fandiyazi, although further investigation is needed to confirm whether they represent a yet undescribed species. Furthermore, our results showed that sequencing the TEF1‐α gene is much more informative than sequencing of the rDNA/ITS region for Fusarium identification at the species level. PCR analysis showed that only Fverticillioides isolates were potentially fumonisin producers and that only the Fequiseti isolate was potentially trichotecene producer. This is the first report on Fusarium thapsinum, Fequiseti and Fandiyazi attacking maize in Syria.  相似文献   

2.
《Fungal biology》2022,126(3):250-266
Many species in the Fusarium fujikuroi Species Complex (FFSC) have an affinity for grass species, with whom they live in an endophytic association or cause disease. We recovered isolates of Fusarium from agriculturally important grasses in Africa and Brazil, and characterized them with morphological markers, mating type, and Amplified Fragment Length Polymorphisms (AFLPs). We also conducted multi-locus phylogenetic analyses based on partial DNA sequences of translation elongation factor-1α (TEF1), β-tubulin (TUB), and the second largest subunit of RNA polymerase (RPB2) gene regions. Sexual cross fertility was used to test the biological species concept and the sexual stage of F. madaense is described. A novel species within the FFSC, Fusarium mirum, that is different from the other known species in the complex, was formally described. Fusarium mirum, F. madaense, and Fusarium andiyazi are a tightly intertwined species trio that are morphologically identical, but phylogenetically distinguishable, and amongst whom interspecific genetic exchange may still occur. These three species are so close that they cannot be reliably distinguished if only sequences of the TEF1 gene are used. In pathogenicity tests, all tested isolates of F. madaense from sugarcane, sorghum, maize, millet and Brachiaria could induce stalk rot in sorghum, maize and millet, and pokkah boeng in sugarcane. This study increases our understanding of the diversity of species within the FFSC that cause disease in tropical grasses or act as endophytes, and their geographic distributions. The genetically close relationship between F. mirum, F. madaense, and F. andiyazi provides an opportunity to study and identify factors underlying their limited inter-specific cross-fertility and sympatric speciation.  相似文献   

3.
Investigations into fungi associated with sorghum grain in Nigeria indicate the occurrence of a newly described fungus, Fusarium andiyazi alongside F. nygamai. These fungi have earlier been reported as F. moniliforme. Our results highlight the need to re-evaluate Fusarium species associated with sorghum in Nigeria.  相似文献   

4.
Fusarium incarnatum-equiseti species complex (FIESC) contain over 40 members. The primer pair Smibo1FM/Semi1RM on the RPB2 partial gene has been reported to be able to identify Fusarium semitectum. The F. fujikuroi species complex (FFSC) contains more than 50 members. The F. verticillioides as a member of this complex can be identified by using VER1/VER2 primer pair on the CaM partial gene. In this research, the Smibo1FM/Semi1RM can amplify F. sulawesiense, F. hainanense, F. bubalinum, and F. tanahbumbuense, members of FIESC at 424 bp. The VER1/VER2 can amplify F. verticillioides, F. andiyazi, and F. pseudocircinatum, members of FFSC at 578 bp. Polymerase chain reaction-restriction fragment length polymorphism by using the combination of three restriction enzymes EcoRV, MspI, and HpyAV can differentiate each species of FIESC used. The two restriction enzymes HpaII and NspI can distinguish each species of FFSC used. The proper identification process is required for pathogen control in the field in order to reduce crop yield loss.  相似文献   

5.
Availability of molecular methods, gene sequencing, and phylogenetic species recognition have led to rare fungi being recognized as opportunistic pathogens. Fungal keratitis and onychomycosis are fairly common mycoses in the tropics, especially among outdoor workers and enthusiasts. The frequently isolated etiological agents belong to genera Candida, Aspergillus, and Fusarium. Within the genus Fusarium, known to be recalcitrant to prolonged antifungal treatment and associated with poor outcome, members of the Fusarium solani species complex are reported to be most common, followed by members of the Fusarium oxysporum SC and the Fusarium fujikuroi SC (FFSC). Morphological differentiation among the various members is ineffective most times. In the present study, we describe different species of the FFSC isolated from clinical specimen in south India. All twelve isolates were characterized up to species level by nucleic acid sequencing and phylogenetic analysis. The molecular targets chosen were partial regions of the internal transcribed spacer rDNA region, the panfungal marker and translation elongation factor-1α gene, the marker of choice for Fusarium speciation. Phylogenetic analysis was executed using the Molecular Evolutionary Genetics Analysis software (MEGA7). In vitro susceptibility testing against amphotericin B, voriconazole, posaconazole, natamycin, and caspofungin diacetate was performed following the CLSI M38-A2 guidelines for broth microdilution method. The twelve isolates of the FFSC were F. verticillioides (n = 4), F. sacchari (n = 3), F. proliferatum (n = 2), F. thapsinum (n = 1), F. andiyazi (n = 1), and F. pseudocircinatum (n = 1). To the best of our knowledge, this is the first report of F. andiyazi from India and of F. pseudocircinatum as a human pathogen worldwide. Natamycin and voriconazole were found to be most active agents followed by amphotericin B. Elderly outdoor workers figured more among the patients and must be recommended protective eye wear.  相似文献   

6.
Fusarium proliferatum, F. subglutinans, and F. verticillioides are known causes of ear and kernel rot in maize worldwide. In Mexico, only F. verticillioides and F. subglutinans, have been reported previously as causal agents of this disease. However, Fusarium isolates with different morphological characteristics to the species that are known to cause this disease were obtained in the Highland-Valley region of this country from symptomatic and symptomless ears of native and commercial maize genotypes. Moreover, while the morphological studies were not sufficient to identify the correct taxonomic position at the species level, analyses based in the Internal Transcribed Spacer region and the Nuclear Large Subunit Ribosomal partial sequences allowed for the identification of F. subglutinans, F. solani, and F. verticillioides, as well as four species (F. chlamydosporum, F. napiforme, F. poae, and F. pseudonygamai) that had not previously been reported to be associated with ear rot. In addition, F. napiforme and F. solani were absent from symptomless kernels. Phylogenetic analysis showed genetic changes in F. napiforme, and F. pseudonygamai isolates because they were not true clones, and probably constitute separate sibling species. The results of this study suggest that the biodiversity of Fusarium species involved in ear rot in Mexico is greater than that reported previously in other places in the world. This new knowledge will permit a better understanding of the relationship between all the species involved in ear rot disease and their relationship with maize.  相似文献   

7.
Mango malformation has become the most important global disease on mango. Fusarium species previously associated with this disease include F. mangiferae, F. mexicanum, F. sterilihyphosum, F. proliferatum, F. subglutinans and F. tupiense. A few strains of F. proliferatum have been reported from Malaysia, but in this study, we report the results of more extensive sampling. The recovered strains were evaluated with morphology, mating tester strain cross‐fertility, amplified fragment length polymorphisms (AFLPs), and partial DNA sequences of the genes encoding translation elongation factor 1‐α (tef‐1α) and β‐tubulin (tub‐2). Amongst the 43 strains evaluated, three species were identified – F. proliferatum, F. mangiferae and F. subglutinans – with F. proliferatum being the most frequent (69%). None of the Fusarium species that appear to originate in the Americas were recovered in Malaysia, which suggests special measures may be warranted to keep these species from entering the country.  相似文献   

8.
Fusarium species are dominant within the sorghum grain mold complex. Some species of Fusarium involved in grain mold complex produce mycotoxins, such as fumonisins. An attempt was made to identify Fusarium spp. associated with grain mold complex in major sorghum-growing areas in India through AFLP-based grouping of the isolates and to further confirm the species by sequencing part of α-Elongation factor gene and comparing the sequences with that available in the NCBI database. The dendrogram generated from the AFLP data clustered the isolates into 5 groups. Five species of FusariumF. proliferatum, F. thapsinum, F. equiseti, F. andiyazi and F. sacchari were identified based on sequence similarity of α-Elongation factor gene of the test isolates with those in the NCBI database. Fusarium thapsinum was identified as predominant species in Fusarium—grain mold complex in India and F. proliferatum as highly toxigenic for fumonisins production. Analysis of molecular variance (AMOVA) revealed 54% of the variation in the AFLP patterns of 63 isolates was due to the differences between Fusarium species, and 46% was due to differences between the strains within a species.  相似文献   

9.
Pineapple (Ananas comosus) is one the important fruit crops planted in Malaysia, and this study was conducted to determine Fusarium spp. associated with diseases of the fruit crop as Fusarium is prevalent in tropical countries. Our objective was to identify and characterize Fusarium spp. associated with pineapple fruit rot and leaf spot mainly found on the fruits and leaves in Peninsular Malaysia. Fusarium isolates (n = 108) associated with pineapple fruit rot and leaf spot were characterized by morphological, molecular and phylogenetic analyses, a mating study and pathogenicity testing. TEF‐1α sequence analysis identified Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari and Fusarium sp. Mating was successful only between tester strains of F. proliferatum and F. verticillioides. Sexual crosses with standard tester strains showed that 82 isolates of F. proliferatum produced fertile crosses with mating population D (Gibberella intermedia) and three isolates of F. verticillioides were fertile with the tester strain of mating population A (Gibberella moniliformis). All isolates were pathogenic, causing pineapple fruit rot and leaf spot, thus fulfilling Koch's postulates.  相似文献   

10.
Fusarium subglutinans f. sp. pini (= F. circinatum) is a pathogen of pine and is one of eight mating populations (i.e., biological species) in the Gibberella fujikuroi species complex. This species complex includes F. thapsinum, F. moniliforme (= F. verticillioides), F. nygamai, and F. proliferatum, as well as F. subglutinans associated with sugarcane, maize, mango, and pineapple. Differentiating these forms of F. subglutinans usually requires pathogenicity tests, which are often time-consuming and inconclusive. Our objective was to develop a technique to differentiate isolates of F. subglutinans f. sp. pini from other isolates identified as F. subglutinans. We sequenced the histone H3 gene from a representative set of Fusarium isolates. The H3 gene sequence was conserved and contained two introns in all the isolates studied. From both the intron and the exon sequence data, we developed a PCR-restriction fragment length polymorphism technique that reliably distinguishes F. subglutinans f. sp. pini from the other biological species in the G. fujikuroi species complex.  相似文献   

11.
Weeds are alternative hosts of plant pathogens and when colonized may not exhibit disease symptoms. In 2008 and 2009, samples of weeds and plant debris were collected from 12 locations in eastern Croatia, and 300 Fusarium isolates colonizing them were identified. Strains were grouped and identified based on morphology and amplified fragment length polymorphism (AFLP) patterns. Portions of the β‐tubulin and translocation elongation factor 1‐α genes were sequenced from representative strains of each group to confirm the identifications. Fourteen Fusarium species were identified with F. graminearum (20%), F. verticillioides (18%), F. oxysporum (16%), F. subglutinans (13%) and F. proliferatum (11%) all present as more than 10% of the population. Fusarium acuminatum, F. avenaceum, F. concolor, F. crookwellense (F. cerealis), F. equiseti, F. semitectum, F. solani, F. sporotrichioides and F. venenatum, were all present at frequencies < 8%. Our results indicate that economically important Fusarium spp. may be isolated from numerous alternative hosts during the off season and that weeds and plant debris can serve as a reservoir of genetically diverse inoculum.  相似文献   

12.
PCR analysis was used to detect Fusarium species generically, as well as the mycotoxin-producing species F.␣subglutinans, F. proliferatum, and F. verticillioides in leaf axil and other maize tissues during ear fill in a multiyear study in central Illinois. The frequency of Fusarium detected varied from site to site and year to year. Fusarium was generically detected more frequently in leaf axil material than in leaf/husk lesions. In two growing seasons, the leaf axil samples were also tested for the presence of the mycotoxin producing species F. proliferatum, F. subglutinans, and F. verticillioides. Overall, F. proliferatum and F. verticillioides were detected less often than F. subglutinans. Fusarium was generically and specifically detected most commonly where visible fungal growth was present in leaf axil material. Disclaimer: The mention of firm names or trade products in this article does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar products not mentioned.  相似文献   

13.
African and Asian populations of Fusarium spp. (Gibberella fujikuroi species complex) associated with Bakanae of rice (Oryzae sativa L.) were isolated from seeds and characterized with respect to ecology, phylogenetics, pathogenicity and mycotoxin production. Independent of the origin, Fusarium spp. were detected in the different rice seed samples with infection rate ranges that varied from 0.25% to 9%. Four Fusaria (F. andiyazi, F. fujikuroi, F. proliferatum and F. verticillioides) were found associated with Bakanae of rice. While three of the Fusaria were found in both African and Asian seed samples, F. fujikuroi was only detected in seed samples from Asia. Phylogenetic studies showed a broad genetic variation among the strains that were distributed into four different genetic clades. Pathogenicity tests showed that all strains reduced seed germination and possessed varying ability to cause symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB1 and FB2) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease.  相似文献   

14.
Fusarium species can produce fumonisins (FBs), fusaric acid, beauvericin (BEA), fusaproliferin (FUS) and moniliformin. Data on the natural occurrence of FBs have been widely reported, but information on BEA and FUS in maize is limited. The aims of this study were to establish the occurrence of Fusarium species in different maize hybrids in Mexico, to determine the ability of Fusarium spp. isolates to produce BEA, FUS and FBs and their natural occurrence in maize. Twenty-eight samples corresponding to seven different maize hybrids were analyzed for mycobiota and natural mycotoxin contamination by LC. Fusarium verticillioides was the dominant species (44–80%) followed by F. subglutinans (13–37%) and F. proliferatum (2–16%). Beauvericin was detected in three different hybrids with levels ranging from 300 to 400 ng g−1, while only one hybrid was contaminated with FUS (200 ng g−1). All samples were positive for FB1 and FB2 contamination showing levels up to 606 and 277 ng g−1, respectively. All F. verticillioides isolates were able to produce FB1 (13.8–4,860 μg g−1) and some also produced FB2 and FUS. Beauvericin, FUS, FB1 and FB2 were produced by several isolates including F. proliferatum and F. subglutinans and co-production was observed. This is the first report on the co-occurrence of these toxins in maize samples from Mexico. The analysis of the presence of multiple mycotoxins in this substrate is necessary to understand the significance of these compounds in the human and animal food chains.  相似文献   

15.
From 2012 to 2014, 70 isolates of Fusarium species were recovered from the wheat fields of Khosf, Giuk, Taqab, Amirabad, Mohammadieh and Bojd in the South Khorasan Province, Eastern Iran. Based on morphological characteristics, these isolates belonged to 14 Fusarium species. DNA of 23 isolates was extracted and their ribosomal ITS regions were amplified, sequenced and aligned with Fusarium species sequences of the GenBank. Among Fusarium isolates, the isolates belonging to F. solani (18.6%), F. acuminatum (12.9%), F. longipes (11.4%) and F. nygamai (10%) species had the higher frequencies. Other isolates from wheat crown and root were F. avenaceum, F. compactum, F. crookwellense, F. culmorum, F. diversisporum, F. equiseti, F. fujikuroi, F. javanicum, F. oxysporum and F. semitectum. This study is the first investigation of Fusarium species associated to wheat crown and root in the eastern desert area of Iran.  相似文献   

16.
Thirteen species of weed plants were collected between May and September in 2010 and 2011 from eggplant fields representing 11 distinct locations covering a wide geographical area of Turkey. Weeds are potential hosts of many plant pathogens and may not exhibit disease symptoms when colonized. Fusarium spp. were isolated from five monocotyledonous species and eight dicotyledonous species. A total of 212 isolates recovered from weeds were assigned to eight Fusarium species on the basis of morphological characteristics. F. oxysporum was the most frequently isolated species (29.7%), followed by F. solani (19.8%), F. graminearum (13.7%), F. verticillioides (12.7%), F.equiseti (9.9%), F. avenacearum (8.0%), F. proliferatum (3.8%) and F. subglutinans (2.4%). The F. oxysporum isolates from different weed hosts were characterized by means of pathogenicity and vegetative compatibility grouping (VCG) tests. Among these, 29 isolates were found to be pathogenic to eggplant cv. Kemer and re‐isolated as Fusarium oxysporum Schlecht. f. sp. melongenae (Fomg) as evidenced. These isolates from weed hosts were assigned to VCG 0320. This study is the first report of Fomg isolated from weeds in eggplant fields in Turkey. None of the weed species tested showed symptoms of wilting in pot experiments, and F. oxysporum was isolated with greater frequency from all inoculated weeds. The results of this study indicate that several weed plants may serve as alternative sources of inoculum for Fomg, during the growing season.  相似文献   

17.
18.
Fusarium verticillioides is the most important seed transmitted pathogen that infects maize. It produces fumonisins, toxins that have potential toxicity for humans and animals. Control of F. verticillioides colonisation and systemic contamination of maize has become a priority area in food safety research. The aims of this research were (1) to characterise the maize endorhizosphere and rhizoplane inhabitant bacteria and Fusarium spp., (2) to select bacterial strains with impact on F. verticillioides growth and fumonisin B1 production in vitro, (3) to examine the effects of bacterial inoculum levels on F. verticillioides root colonisation under greenhouse conditions. Arthrobacter spp. and Azotobacter spp. were the predominant genera isolated from maize endorhizosphere and rhizoplane at the first sampling period, whilst F. verticillioides strains showed the greatest counts at the same isolation period. All F. verticillioides strains were able to produce fumonisin B1 in maize cultures. Arthrobacter globiformis RC5 and Azotobacter armeniacus RC2, used alone or in a mix, demonstrated important effects on F. verticillioides growth and fumonisin B1 suppression in vitro. Only Azotobacter armeniacus RC2 significantly reduced the F. verticillioides root colonisation at 106 and 107 CFU g–1 levels under greenhouse conditions.  相似文献   

19.
Aims: To quantify and to compare the occurrence of Fusarium species in maize kernels and stalk pieces, to analyse mycotoxins in kernels and maize crop residues, to evaluate two approaches to obtain kernel samples and to compare two methods for mycotoxin analyses. Methods and Results: The occurrence of Fusarium species in maize kernels and stalk pieces from a three‐year maize hybrid trial and 12 kernel samples from grower’s fields was assessed. Nine to 16 different Fusarium species were detected in maize kernels and stalks. In kernels, F. graminearum, F. verticillioides and F. proliferatum were the most prevalent species whereas in stalks, they were F. equiseti, F. proliferatum and F. verticillioides. In 2006, 68% of the kernel samples exceeded the recommended limit for pig feed for deoxynivalenol (DON) and 42% for zearalenone (ZON), respectively. Similarly, 75% of the samples from grower’s fields exceeded the limits for DON and 50% for ZON. In maize crop residues, toxin concentrations ranged from 2·6 to 15·3 mg kg?1 for DON and from 0·7 to 7·4 mg kg?1 for ZON. Both approaches to obtain maize kernel samples were valid, and a strong correlation between mycotoxin analysis using ELISA and LC‐MS/MS was found. Conclusions: The contamination of maize kernels, stalk pieces and remaining crop residues with various mycotoxins could pose a risk not only to animal health but also to the environment. With the hand‐picked sample, the entire Fusarium complex can be estimated, whereas combine harvested samples are more representative for the mycotoxin contents in harvested goods. Significance and Impact of the Study: This is the first multi‐year study investigating mycotoxin contamination in maize kernels as well as in crop residues. The results indicate a high need to identify cropping factors influencing the infection of maize by Fusarium species to establish recommendations for growers.  相似文献   

20.
A recently isolated Fusarium population from maize in Belgium was identified as a new species, Fusarium temperatum. From a survey of Fusarium species associated with maize ear rot in nineteen provinces in 2009 in China, ten strains isolated from Guizhou and Hubei provinces were identified as F. temperatum. Morphological and molecular phylogenetic analyses based on the DNA sequences of individual translation elongation factor 1‐alpha and β‐tubulin genes revealed that the recovered isolates produced macroconidia typical of four‐septate with a foot‐shaped basal cell and belonged to F. temperatum that is distinctly different from its most closely related species F. subglutinans and others within Gibberella fujikuroi complex species from maize. All the strains from this newly isolated species were able to infect maize and wheat in field, with higher pathogenicity on maize. Mycotoxin determination of maize grains infected by the strains under natural field condition by ultra‐high‐performance liquid chromatography–tandem mass spectrometry and gas chromatography–mass spectrometry analyses showed that among fifteen mycotoxins assayed, two mycotoxins fumonisin B1 and B2 ranging from 9.26 to 166.89 μg/g were detected, with massively more FB2 mycotoxin (2.8‐ to 108.8‐fold) than FB1. This mycotoxin production profile is different from that of the Belgian population in which only fumonisin B1 was barely detected in one of eleven strains assayed. Comparative analyses of the Ftemperatum and F. subglutinans strains showed that the highest fumonisin producers were present among the Ftemperatum population, which were also the most pathogenic to maize. These results suggested a need for proper monitoring and controlling this species in the relevant maize‐growing regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号