首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jan C. J. Eeken 《Chromosoma》1974,49(2):205-217
Drosophila lebanonensis displays a strict circadian rhythm with regard to the puparium formation and the occurrence of ecdysone-specific puffs in the salivary gland chromosomes. In normal development these puffs occur 3–4 hours before puparium formation. Injection of β-ecdysone at periods before ecdysone puffs are present, induces in all instances their appearance within 30 minutes, irrespective of the phase of the circadian oscillation at the time of injection. In spite of the appearance of the hormone specific puffs following β-ecdysone injection, puparium formation did not occur 3–4 hours after the puffs became active. Depending upon the time of injection within the circadian cycle, puparium formation occurred 5–6 hours after injection (when injection was performed close to a “gate” period), or occurred during the next “gate” of the circadian oscillation.  相似文献   

2.
The larval salivary gland of Drosophila melanogaster synthesises a complex secretion, known as ‘glue’. which is secreted at puparium formation and then cements the puparium to its substrate. This secretion is made during the third larval instar and is stored in the gland cells as large granules. A few hours before puparium formation it is secreted into the gland's lumen by exocytosis. This process is induced by ecdysone and can be studied in vitro. Secretion is initiated about 3.5 hr after exposure of glands to ecdysone and is complete by 8 hr. The effects of varying the ecdysone concentration, of inhibitors of RNA or protein synthesis, and of withdrawing the hormone at various times after initial exposure on the process of secretion have been studied. We conclude that some event(s) occurring during the first 3 hr exposure to ecdysone is necessary to initiate secretion of the glue into the gland lumen. The possible relationship between this event(s) and the ecdysone induced changes in gene activity (puffs) which occur in the salivary glands at the same time is discussed.  相似文献   

3.
Radioimmunoassay has been used to determine the characteristics of ecdysteroid synthesis by ring glands and brain-ring gland preparations from late 3rd-instar larvae of Drosophila melanogaster cultured in vitro. The rate of synthesis and secretion is linear for at least 4 hr in culture. Using a 4-hr culture period, variation in the rate of ecdysteroid synthesis by brain-ring gland preparations during larval, prepupal and pupal development has been examined. The rate of synthesis and secretion is highest in late 3rd-instar larvae and decreases after puparium formation. During pupal development, at a time when the endogenous ecdysteroid titre is again increasing, the rate of ecdysteroid synthesis by brain-ring gland preparations remains low and is only 10% of that prior to puparium formation. It is, therefore, likely that the ring gland is not a major source of ecdysteroids during this period.  相似文献   

4.
The levels of ecdysteroids in Sarcophaga bullata were determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) to after the 2nd ecdysis and from late larval to pupal development. Two distinct peaks of ecdysteroid activity were recorded mid-way through the first and second stadia (14 and 34 hr) and two smaller peaks occurred a few hours prior to each ecdysis. A large release of ecdysteroids occurred from 8 hr before and up to 18 hr after formation of the white prepupa. This peak initiated the formation of the prepupa, the tanning of the puparium, larval/pupal apolysis and secretion of the pupal cuticle.Assays for the cuticle tanning hormone, bursicon, in pre-ecdysial larvae were not positive and a possible role for ecdysone in pre-ecdysial tanning of larval cuticular structures is proposed.  相似文献   

5.
The rate of loss of water and the rate of uptake of oxygen were measured continuously throughout the development of Lucilia cuprina within the puparium. Changes in these parameters were correlated with changes observed in morphology of cuticles and respiratory structures during development.In development at 26°C, there is, at 20–22 hr after puparium formation a major loss of water by mechanical expulsion of moulting fluid chiefly through the posterior larval spiracles after the severing of the posterior larval tracheae. This loss of water is essential to survival and is followed by an extremely low rate of water loss attributed to slow diffusion of water through the resulting air gap between the pupal cuticle and the puparium. There is an increase in oxygen consumption during the pupal movements associated with the casting of the larval tracheae followed by a sharp reduction in oxygen consumption until the pupal horns are everted a short time later. This combination of physiological events enables development to proceed over a wide range of conditions in the puparial environment.  相似文献   

6.
Chitinase activity during Drosophila development   总被引:1,自引:0,他引:1  
Before both larval moults in Drosophila melanogaster, the chitin in the cuticle is digested to a significant degree by the moulting fluid. A spurt of chitinase activity appears just before each ecdysis, drops sharply after the first ecdysis, and begins to rise again just about the time that chitin degradation becomes evident. The level of enzyme activity/mg of soluble protein reached just before the second ecdysis is about twice that reached before the first, and this declines gradually after the ecdysis until puparium formation. Chitinase activity is measured with a viscometric assay on a chitosan substrate.The enzyme activity is stable, with no loosely bound cofactor. Data also exist supporting the presence of more than one enzyme fraction in Drosophila with chitinase activity.  相似文献   

7.
Wing discs from late final-instar Ephestia larvae form only pupal cuticle when immediately implanted into pupae which subsequently undergo metamorphosis. However, either pupal or adult structures are made in vitro depending on (1) the ecdysterone dose and/or (2) disc cell proliferation. Continuous culture in ecdysterone (0.5–5.0 μg/ml) results in the appearance of transparent cuticle. On the basis of several criteria, this untanned cuticle is postulated to be scaleless adult cuticle. Discs pulsed with 0.5 μg/ml ecdysterone for 48–120 hr, or with 5.0 μg/ml for 24 hr, formed tanned cuticle. Lower doses of ecdysterone (i.e., 0.5 μg/ml for 24 hr or continuous exposure to 0.05 μg/ml) trigger adult scale formation. Enhancement of [3H]thymidine incorporation by these latter doses suggests the occurrence of disc cell divisions and polyploidization. The choice between pupal and adult pathways by wing discs of this age can be controlled exclusively by ecdysterone; juvenile hormone need not be involved in vitro.  相似文献   

8.
The mutant allele giant of Drosophila melanogaster affects the timing and the level of increase in ecdysteroid titer normally occurring at puparium formation. The third larval instar is extended by 4 days in phenotypically “giant” individuals during which the imaginal discs mature slower than normal and finally take on the folding pattern characteristic of maturity at a time when normal individuals have already formed puparia. After puparium formation, development occurs at the same rate in giant and wild-type animals. Feeding 20-hydroxyecdysone at 94 hr after oviposition allows giant larvae to develop at the same rate as wild-type larvae and to produce normal-sized adults (although at 94 hr the imaginal discs of giant lack much of the folding pattern of mature discs). Radioimmunological determination of ecdysteroid titers in giant and normal individuals indicates that the peak of ecdysteroid activity associated with puparium formation is lower in giant and occurs 4 days later than normal. These results indicate that giant is an ecdysteroid-deficient mutant with major effects on metamorphosis. Unlike previously reported ecdysteroid-deficient mutants, however, giant larvae eventually develop into adults and may be induced to undergo complete metamorphosis at the same time as wild type by feeding 20-hydroxyecdysone.  相似文献   

9.
RNA synthesis in normal Trichoplusia ni fifth instars and hosts parasitized at ca. 12 hr post-ecdysis was followed by measuring 3H-uridine incorporation with an autoradiographic technique.Uptake of 3H-uridine was high in control prothoracic glands at 6 and 30 hr and their cytology indicated an active secretory phase which was most pronounced at 30 hr. At the same time, glands of parasitized larvae decreased incorporation and appeared less active than controls. At > 75 hr, control fat body cells incorporated almost no label but were filled with RNA-protein granules apparently sequestered from the haemolymph preparatory to pupation. With respect to incorporation and cytology, fat body of parasitized larvae was unchanged from earlier in the instar, which indicates that the changeover to pupal preparations had not taken place. Imaginal wing disks incorporated label and grew appreciably in control larvae but abruptly decreased uptake and showed no size increase in parasitized larvae. Incorporation of Malpighian tubule, midgut epithelium, and certain muscles at > 75 hr showed little change in parasitized larvae, but in controls activity was reduced and histolysis occasionally was evident in muscles.The parasitoid, Hyposoter exiguae, apparently prevented host larvae from pupating by preventing activation of host prothoracic glands in the fifth instar. Other tissues which are normally activated for metamorphosis by the prothoracic glands continued normal larval activities until the end of the association.  相似文献   

10.
The four strains of Drosophila melanica studied were found to be most sensitive to low humidities during the first 19 hr after formation of the puparium. The mean fresh weights for the four strains were consistently different at all ages after puparium formation and at all conditions of temperature and humidity. The Forest Park strain, which showed greatest mortality at low humidity, had least body water per unit dry weight in the early pupal stage.A typical U-shaped oxygen consumption rate curve was found during the puparial-pharate adult period at all conditions of temperature and humidity. Differences among the strains were manifested at an earlier age under the more extreme environmental conditions.  相似文献   

11.
After SDS-polyacrylamide gel electrophoresis two glycosylated glue proteins are found in the salivary glands of Drosophila virilis late third instar larvae. Synthesis of larval glue protein 1 occurs in three successive steps: at first a precursor protein with a molecular weight of about 138,000 daltons is formed. This is modified by two subsequent steps of glycosylation, the first one involving hexosamine, the second one hexoses. Studies with tunicamycin and β-hydroxynorvaline suggest that glycosylation occurs at threonine residues. Larval glue protein 2 has a molecular weight of approximately 15,000 daltons and is weakly glycosylated. The synthesis of glue proteins is stage specific. It starts at about 120 hr after oviposition and attains its maximal rate about 20 hr later. At this time the larvae leave the food. Between ecdysone release and puparium formation (146–151 hr) larval glue protein synthesis is terminated. Throughout the prepupal stage a different set of glycoproteins is synthesized. Thus, the larval-prepupal transition is accompanied by the reprogramming of glycoprotein synthesis in salivary glands. The secretion products formed during the two developmental stages seem to possess different biological functions.  相似文献   

12.
After repetitive injections of moderate doses of ecdysone, ecdysterone or phenobarbital to young Vth (last) instar larvae of Locusta migratoria, the conversion rate of ecdysone to ecdysterone in vivo is significantly higher than in control insects. Similarly, 5 hr after injection of a low dose of ecdysone or ecdysterone, a strong ‘induction’ of ecdysone 20-monooxygenase activity occurs. This ‘inductive’ effect is blocked by cycloheximide.Simultaneous injections of ecdysone and ecdysterone show that hydroxylation of ecdysone is inhibited by the product of the reaction, ecdysterone. Removal of the prothoracic glands and X-ray treatment of the hemocytopoietic tissue do not affect ecdysone hydroxylation. The mechanism of induction and inhibition of ecdysone 20-monooxygenase shown in this study is probably responsible for the important variations of this key enzyme which have been reported from several insect species.  相似文献   

13.
The haemolymph ecdysteroid titre of the last larval and pupal stadia of Calpodes ethlius was determined by radioimmunoassay. During the last larval stadium, four significant ecdysteroid peaks are present, two of which have been reported for other Lepidoptera. The first peak occurs 12 hr after ecdysis and correlates temporally with nucleolar activity, RNA synthesis and organelle formation in the fat body and epidermis. It correlates also with fat body DNA synthesis, polyploidy and the initiation of a low rate of lipid synthesis. Another peak, at 78 hr, starts its increase when the prothoracic glands no longer require the influence of the brain to produce ecdysone for pupation, and marks the first critical period. It correlates with the initiation of epidermal DNA synthesis and mitosis, and with the progressive determination of pupal characteristics (change in commitment, reprogramming). This ecdysteroid peak may also be involved in the massive intermoult syntheses in the epidermis (lamellate cuticle, wax) and the fat body (lipid, protein). The largest ecdysteroid peak is seen at 162 hr, 6 hr after the tissues no longer require the prothoracic glands for pupation (second critical period). It correlates temporally with the cessation of massive synthetic activity in both epidermis and fat body and initiates preparation for pupal synthesis in both tissues. At this time the ratio of ecdysone: 20-hydroxyecdysone is ~ 1 : 6.6.In common with other Lepidoptera, a single large ecdysteroid peak occurs during the first half of the pupal stadium. Comparisons between these events and the ecdysteroid titre are made between Calpodes and other insects.  相似文献   

14.
A central function of the Drosophila salivary glands (SGs), historically known for their polytene chromosomes, is to produce and then release during pupariation the secretory glue used to affix a newly formed puparium to a substrate. This essential event in the life history of Drosophila is regulated by the steroid hormone ecdysone in the late‐larval period. Ecdysone triggers a cascade of sequential gene activation that leads to glue secretion and initiates the developmentally‐regulated programmed cell death (PCD) of the larval salivary glands, which culminates 16 h after puparium formation (APF). We demonstrate here that, even after the larval salivary glands have completed what is perceived to be one of their major biological functions – glue secretion during pupariation – they remain dynamic and physiologically active up until the execution phase of PCD. We have used specific metabolic inhibitors and genetic tools, including mutations or transgenes for shi, Rab5, Rab11, vha55, vha68‐2, vha36‐1, syx1A, syx4, and Vps35 to characterize the dramatic series of cellular changes occurring in the SG cells between pupariation and 7–8 h APF. Early in the prepupal period, they are remarkably active in endocytosis, forming acidic vacuoles. Midway through the prepupal period, there is abundant late endosomal trafficking and vacuole growth, which is followed later by vacuole neutralization and disappearance via membrane consolidation. This work provides new insights into the function of Drosophila SGs during the early‐ to mid‐prepupal period.  相似文献   

15.
When whole blood from 5 day third instar larvae of the fleshfly, Sarcophaga barbata was incubated under nitrogen at 25°C for 16 hr in the presence of salivary glands there was an increase in its protyrosinase content, which amounted to 53% of that which occurs in vivo over the same period. The protyrosinase in ammonium sulphate fractions of haemolymph that were allowed to stand at 4°C for 24 hr following the incubation at 25°C was found to have autoactivated. Analysis of all these fractions revealed the presence of a protyrosinase activator in the 30% saturated ammonium sulphate fraction. When proenzyme and haemolymph activator were mixed there followed a lag period before the rapid phase of activation, the duration of the lag being dependent upon the concentration of both proenzyme and activator. The final activity attained was dependent upon the concentration of proenzyme, but was independent of the activator concentration and was comparable to that obtained using the cuticle activator. The level of activator in the haemolymph increased as larvae aged from 4 to 7 days.The effect of several compounds on the catecholase activity of the activated haemolymph protyrosinase and on the cuticle enzyme is reported and the significance of haemolymphal activation of protyrosinase is discussed.  相似文献   

16.
The level of ecdysone in Drosophila melanogaster was determined by a radioimmune assay in organisms selected between the second larval instar and maturity. Maxima in the titer of the hormone were observed at puparium formation and 38 hr later, just prior to the secretion of the adult cuticle. The level of ecdysone was very low in adults of either sex. However, adult females had significantly more ecdysone per organism than did males. The magnitude of this difference could be correlated with ovarian development, suggesting a possible role for ecdysone in ovarian maturation in this organism.  相似文献   

17.
When plasma from third instar larvae of the fleshfly, Sarcophaga barbarta, was diluted tenfold with distilled water, lipoproteins precipitated out. After centrifuging, the water supernatant was rendered 30, 50, and 65% to ammonium sulphate, and it was found that the 50% fraction contained 95% of the tyrosinase activity in all the fractions, the enzyme being present in its inactive form or proenzyme. The proenzyme was activated by mixing it with activator isolated from the larval cuticle. After addition of activator there followed a lag period before the rapid phase of activation, the duration of the lag being dependent upon the concentration of both proenzyme and activator. The final activity attained was dependent upon the concentration of proenzyme but was independent of the activator concentration.The level of proenzyme in the plasma rose steadily throughout the third larval instar reaching a maximum in 7 day larvae, formation of the puparium commencing about 24 hr later, the rounded-off white stage (r.o.). At the r.o. and golden-brown stage (1 hr later) the level was still maximal, but 12 hr later at the dark-brown puparial stage no proenzyme was isolatable from the plasma, all the enzyme at this stage behaving as active enzyme.The vast majority (95%) of the proenzyme isolated from plasma in the larval stages and at the r.o. white stage was present in the 50% ammonium sulphate fraction, whereas 1 hr later at the golden-brown stage only 33% of the proenzyme was found in the 50% fraction, 62% now being found in the 65% fraction. At the dark-brown puparial stage 12 hr later, not only was there a further redistribution, but all the enzyme behaved as active enzyme. It is suggested that these changes in the distribution and behaviour of the proenzyme indicate that, in vivo, activation of the enzyme in the blood has taken place over the period r.o. white to the golden-brown to dark-brown puparial stage.  相似文献   

18.
19.
Morphological and physiological evidence is presented to show that ecdysterone (20E) and juvenile hormone (JH) directly affect the silk glands of Galleria mellonella (Lepidoptera : Pyralidae). Within 1 hr in a culture medium, 20E at 5 or 50 ng/ml stimulates, and at 5 μg/ml inhibits, RNA synthesis. Both these effects are obliterated with physiological (1 ng/ml) and higher doses of JH II or a juvenoid. Dipping of isolated larval abdomens in 0.32% 20E suppresses the rate of RNA synthesis in freshly dissected silk glands incubated in a hormone-free medium. The ultrastructure of silk glands shows functional regression, followed by histolysis within 72 hr after dipping. Both the reduction of RNA synthesis and the cytological changes are prevented when the abdomens receive JH II or a juvenoid simultaneously with 20E. Presence of JH II in the culture medium also enhances RNA synthesis in silk glands dissected from abdomens that had been treated with 20E. The results reveal that the effect of 20E is dose-dependent and may be prevented, and up to a certain point reversed, with JH.  相似文献   

20.
《Developmental biology》1987,122(2):396-406
A simple assay system for gene regulation using chromosomal puffing as an index of gene activity was established. Salivary glands of Drosophila melanogaster treated with a mild detergent, digitonin, were permeable to high molecular substances, including β-galactosidase (MW 465,000). The permeabilized salivary glands retained the ability to form puffs at the ecdysterone-stimulated loci (74EF and 75B) in response to the hormone. Incubation of the permeabilized salivary glands at puff stage 1 (PS1) for 2 hr in a medium containing both ecdysterone and a homogenate of intact salivary glands at puff stage 8–9 (PS8–9) induced a puff at 78C, where puffing occurs only at puff stages 6–11 in vivo. The puff at 78C was not induced when the permeabilized PS1 glands were incubated with the combination of ecdysterone and a homogenate of the PS1 salivary glands. Likewise, the 78C puff was not induced in intact PS1 salivary glands by a 2-hr incubation with ecdysterone and PS8–9 gland homogenate. These results indicate that a factor(s) required for 78C puff formation is present in PS8–9 but not in PS1 salivary glands and that factor(s) can permeate digitonin-treated salivary glands but not intact glands. The effectiveness of the permeabilized salivary glands as an assay system for gene-regulating factors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号