首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Tocopherol and ascorbic acid have been suggested to play a role in breast cancer prevention due to their antioxidative capacity. Increased exposure to endogenous and exogenous sex steroids is a known risk factor for breast cancer. We have studied the effects of α-tocopherol and ascorbic acid on hydrogen peroxide induced cell death in sex hormone treated normal breast epithelial cells in culture. We found that α-tocopherol but not ascorbic acid alone protected the cells. The effect of α-tocopherol increased when ascorbic acid was added to the cultures. The hydrogen peroxide degradation rate decreased in cultures treated with α-tocopherol alone and in combination with ascorbic acid compared to cells grown in medium or with ascorbic acid only. Oestradiol and progesterone treatment did not influence the results. Possible beneficial effects of combining various antioxidants, endogenous as well as exogenous, on human breast tissue need to be investigated further both in vivo and in vitro.  相似文献   

2.
The antioxidative effect of α-tocopherol incorporated into lecithin liposomes was studied. Lipid peroxidation of liposome membranes, assayed as malondialdehyde production, was catalyzed by ascorbic acid and Fe2+. The peroxidation reaction, which did not involve the formation of singlet oxygen, superoxide, hydrogen peroxide, or a hydroxyl radical, was inhibited by α-tocopherol and a model compound of α-tocopherol, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (TMC), but not by phytol, α-tocopherylquinone, or α-tocopheryl acetate. One mole of α-tocopherol completely prevented peroxidation of about 100 moles of polyunsaturated fatty acid. Decrease in membrane fluidity by lipid peroxidation, estimated as increase of fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the membrane, was also inhibited by α-tocopherol and TMC, reflecting their antioxidant functions. Cholesterol did not act as an antioxidant, even when incorporated in large amount into the liposome membranes, but it increased the antioxidative efficiency of α-tocopherol. When a mixture of liposomes with and without α-tocopherol was incubated with Fe2+ and ascorbic acid, α-tocopherol did not protect the liposomes not containing α-tocopherol from peroxidation. However, preincubation of the mixture, or addition of Triton X-100 allowed the α-tocopherol to prevent peroxidation of the liposomes not containing α-tocopherol. In contrast, in similar experiments, liposomes containing TMC prevented peroxidation of those without TMC without preincubation. Tocopherol in an amount so small as to exhibit only a slight antioxidative effect was oxidized when incorporated in egg lecithin liposomes, but it mostly remained unoxidized when incorporated in dipalmitoyllecithin liposomes, indicating that oxygen activated by ascorbic acid-Fe2+ does not oxidize α-tocopherol directly. Thus, decomposition of α-tocopherol may be caused by its interaction with peroxy and/or alkoxyl radicals generated in the process of lipid peroxidation catalyzed by Fe2+ and ascorbic acid.  相似文献   

3.
The effect of ascorbic acid on microsomal thiamine diphosphate activity in rat brain was examined. Ascorbic acid at 0.02–0.1 mM increased the thiamine diphosphate activity by 20–600% and produced a significant amount of lipid peroxide, which was measured with thiobarbiturate under the same conditions as the enzyme. A lag period of about 10 min was observed in the process of stimulation of enzyme activity by ascorbic acid. The stimulation of enzyme activity and the lipid peroxidation induced by ascorbic acid were blocked by metal-binding compounds (EDTA, α,α′-dipyridyl, o-phenanthroline) and an antioxidant (N,N′-diphenyl p-phenylenediamine). GSH significantly enhanced the stimulation of enzyme activity and formation of lipid peroxide by 0.02–0.05 mM ascorbic acid. The effect of GSH was due in part to maintenance of the concentration of ascorbic acid in the medium, since GSH could convert dehydroascorbic acid, an oxidized form of ascorbic acid, to ascorbic acid.  相似文献   

4.
The events accompanying the inhibitory effect of α-tocopherol and/or ascorbate on the peroxidation of soybean L-α-phosphatidylcholine liposomes, which are an accepted model of biological membranes, were investigated by electron paramagnetic resonance, optical and polarograpic methods. The presence of α-tocopherol radical in the concentration range 10?8–10?7 M was detected from its EPR spectrum during the peroxidation of liposomes, catalysed by the Fe3+-triethylnetatramine complex. The α-tocopherol radical, generated in the phosphatidylcholine bilayer, is accessible to ascorbic acid, present in the aqueous phase at physiological concentrations. Ascorbic acid regenerates from it the α-tocopherol itself. A kinetic rate constant of about 2·105 M?·s?1 was estimated from the reaction as it occurs under the adopted experimental conditions. The scavenging effect of α-tocopherol on lipid peroxidation is maintained as long a ascorbic acid is present.  相似文献   

5.
Two experiments were conducted: Expt 1 determined the optimal allowance of vitamin E in the diet for broiler chicks aged 0–3 weeks; Expt 2 investigated the effects of different dietary levels of vitamin E (α-tocopherol) on the performance and the oxidative stability of thigh meat of broiler chicks during storage. In Expt 1, 1-day-old 900 broiler chicks were allocated to five treatments, each with six replicates (cages) of 22 as-hatched chicks for performance evaluation, and another cage of 45 male chicks for determining plasma and hepatic α-tocopherol and thiobarbituric acid reactive substances (TBARS) concentration in blood and liver. The basal dietary α-tocopherol concentration was 13 mg/kg, and the five α-tocopherol acetate supplementation levels were 0, 5, 10, 50 and 100 mg/kg. For 0–3-week-old broiler chicks fed with maize–soya bean meal–soya oil type diet, supplementation of vitamin E did not influence the feed intake, but tended to improve growth and feed utilization, however there was no significant correlation between performance and vitamin E supplementation level. Significant positive correlations existed between dietary supplemental vitamin E level and plasma or hepatic α-tocopherol concentrations (P<0.05), and a negative correlation with hepatic TBARS levels no matter at what age (11, 16 and 21 days). In Expt 2, 2200 broiler chicks were randomly allocated to five treatments with four replicates (pens) in each. Chicks were fed ad libitum five pellet diets supplemented with vitamin E at 5, 10, 20, 50 and 100 mg/kg of diet, respectively. The basal dietary α-tocopherol level of grower and finisher diets were 7 and 6 mg/kg, respectively. Supplementation of vitamin E tended to improve growth and feed utilization of birds during 0–3 weeks of age, but the performance from 0 to 6 weeks of age were not influenced. The hepatic α-tocopherol concentrations of 6-week-old chicks linearly increased with the dietary vitamin E levels (R2=0.98, P<0.001). The content of TBARS in the thigh meat over 4 days of storage under 4°C was significantly decreased by increasing dietary vitamin E level (P<0.05). There was a significant inverse relationship between TBARS value in the thigh meat and the dietary vitamin E level (R2=0.93, P<0.01). Supplementation of vitamin E significantly improved the meat quality stability substantially against oxidative deterioration. Comparing the hepatic α-tocopherol levels of chicks in Expts 1 and 2, total allowance of dietary α-tocopherol of 20–30 mg/kg could sustain relatively constant hepatic α-tocopherol level at round about 2–2.5 μg/kg.  相似文献   

6.
Lipoxygenase is suggested to be involved in the early event of atherosclerosis by inducing plasma low-density lipoprotein (LDL) oxidation in the subendothelial space of the arterial wall. Since flavonoids such as quercetin are recognized as lipoxygenase inhibitors and they occur mainly in the glycoside form, we assessed the effect of quercetin and its glycosides (quercetin 3-O-β-glucopyranoside, Q3G; quercetin 4′-O-β-glucopyranoside, Q4′G; quercetin 7-O-β-glucopyranoside, Q7G) on rabbit reticulocyte 15-lipoxygenase (15-Lox)-induced human LDL lipid peroxidation and compared it with the inhibition obtained by ascorbic acid and α-tocopherol, the main water-soluble and lipid-soluble antioxidants in blood plasma, respectively. Quercetin inhibited the formation of cholesteryl ester hydroperoxides (CE-OOH) and endogenous α-tocopherol consumption effectively throughout the incubation period of 6 h. Ascorbic acid exhibited an effective inhibition only in the initial stage and LDL preloaded with fivefold α-tocopherol did not affect the formation of CE-OOH compared with the native LDL. CE-OOH formation was inhibited by both quercetin and quercetin monoglucosides in a concentration-dependent manner. Quercetin, Q3G, and Q7G exhibited a higher inhibitory effect than Q4′G (IC50: 0.3–0.5 μM for quercetin, Q3G, and Q7G and 1.2 μM for Q4′G). While endogenous α-tocopherol was completely depleted after 2 h of LDL oxidation, quercetin, Q7G, and Q3G prevented the consumption of α-tocopherol. Quercetin and its monoglucosides were also exhausted during the LDL oxidation. These results indicate that quercetin glycosides as well as its aglycone are capable of inhibiting lipoxygenase-induced LDL oxidation more efficiently than ascorbic acid and α-tocopherol.  相似文献   

7.
The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l?1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l?1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l?1) and ascorbic acid (5 and 10 mg l?1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l?1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l?1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l?1 α-tocopherol. When 50 mg l?1 α-tocopherol was combined with 5 or 10 mg l?1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l?1 of reduced glutathione and 5 mg l?l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.  相似文献   

8.
The effect of α-tocopherol on the lipid fluidity of porcine intestinal brush-border membranes was studied using pyrene as a fluorescent probe. Addition of α-tocopherol to the medium decreased fluorescence intensity and lifetime, but increased the fluorescence polarization of pyrene-labeled membranes. β-, γ-, and δ-Tocopherols gave no appreciable effect on the fluorescence intensity and polarization of the complex. The apparent dissociation constant (3.1 ± 0.12 μM) of the interaction of α-tocopherol with the membranes, estimated from the change in the fluorescence intensity with varying concentrations of α-tocopherol, was in good agreement with the concentration required to cause the half-maximal inhibition of lipid peroxidation of the membranes performed by incubation with 100 μM ascorbic acid and 10 μM Fe2+. Decrease of the slope in the thermal Perrin plot of the polarization of pyrene-labeled membranes by α-tocopherol suggests that the movement of pyrene molecules in the membranes is restricted by binding of the tocopherol. This interpretation was confirmed by an increased harmonic mean of the rotational relaxation time of the dye molecules in the membranes from 10.9 ± 0.16 to 18.5 ± 0.51 μs after addition of 25 μM α-tocopherol to the medium. The perturbation of lipid phase in the membranes induced by α-tocopherol was also suggested from a decreased quenching rate constant of pyrene fluorescence in the membranes for Tl+. Based on these results, the effect of α-tocopherol on the lipid fluidity of the membranes is discussed.  相似文献   

9.
Exposure of U937 cells to low micromolar levels of ascorbic acid or dehydroascorbic acid, while resulting in identical ascorbic acid accumulation, is unexpectedly associated with remarkably different responses to exogenous oxidants. We observed that otherwise nontoxic levels of hydrogen peroxide, tert-butylhydroperoxide or peroxynitrite promote toxicity in cells preloaded with ascorbic acid, whereas hardly any effect was detected in cells pretreated with dehydroascorbic acid. Further experiments performed with peroxynitrite in cells preloaded with ascorbic acid provided evidence for a very rapid nonapoptotic death, preceded by early Bax mitochondrial translocation and by mitochondrial permeability transition. The notion that conversion of extracellular ascorbic acid to dehydroascorbic acid prevents the enhancing effects on oxidant toxicity and nevertheless preserves the net amount of vitamin C accumulated was also established using ascorbate oxidase as well as various sources of superoxide, namely, xanthine/xanthine oxidase or ATP-driven NADPH oxidase activation. These findings suggest that superoxide-dependent conversion of extracellular ascorbic acid to dehydroascorbic acid represents an important component of the overall survival strategy of some cell types to reactive oxygen/nitrogen species.  相似文献   

10.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

11.
This study aimed to establish whether protocorm-like bodies (PLBs) of hybrid Cymbidium Twilight Moon ‘Day Light’ could be cultured on paper bridges to remove tissue and medium browning and enhance growth. In addition, the effects of two antioxidants (ascorbic acid [AA] and α-tocopherol [AT]) and activated charcoal (AC) on tissue and medium browning were evaluated. Half-PLBs were cultured on Whatman No. 1 paper bridges in 10 ml of medium containing AC, AA, or AT. The production and development of new PLBs was inferior to that on standard agar-based solid medium when half-PLBs were used. The addition of 1 g/l AC, 10 mg/l AA, or 25 mg/l AT did not affect the formation of new PLBs from half-PLBs, but tissue or medium browning was also not observed. Encapsulated PLBs developed from half-PLBs germinated on medium containing AC or antioxidants. This research provides a simple but effective chemical means, through the use of AC or antioxidants, of avoiding tissue or medium browning without negatively impacting the growth and productivity of orchid PLBs. The use of paper bridges, however, significantly reduced PLB-related growth and development parameters relative to agar-based medium.  相似文献   

12.
Summary Tissue browning that frequently results in the early death of bamboo shoots in vitro correlated directly with polyphenol oxidase (PPO, EC 1.10.3.1) activity and inversely with titratable acidity. It was unrelated to the level of endogenous phenols. During the course of culture, timing of PPO activity paralleled that of explant browning. Browning was highest among shoots cultured in a medium of pH 8, which was consistent with the pH optinum of the bamboo enzyme. The pH optimum was first determined with the crude enzyme, then verified with two purified isozymes. Stability of the bamboo PPO was also highest at pH 10. PPO activities of the severely browning Dendrocalamus latiflorus, the moderately browning Phyllostachys nigra, and the relatively non-browning Bambusa oldhamii were inhibited strongly by ascorbic acid, cysteine, sodium diethyldithiocarbamate, and sodium sulfite. But characterization of bamboo PPO according to enzyme inhibitors was not possible because enzyme extracts of the three species gave varied responses to the traditional substances. Nutrient medium addenda of some PPO inhibitors, namely ascorbic acid, cysteine, kojic acid, and thiourea, mainly enhanced browning. However, ferulic acid at 3 mM and lower concentrations reduced the number of brown shoots per culture, although not the percentage of cultures that browned. Polyvinylpyrrolidone failed completely to suppress browning. The two purified isozymes showed different temperature optima for PPO activity: 60°C and 65°C. The purified isozymes displayed a substrate preference for dopamine, or a cathecol oxidase characteristics.  相似文献   

13.
Abstract

The biomimetic model of micelles of linoleic acid containing 2-mercaptoethanol and the antioxidant was examined under gamma irradiation up to 400?Gy in aerobic or deoxygenated conditions where thiyl radicals are the main reactive species. Lipid peroxidation was retarded by ascorbic acid and α-tocopherol, whereas this process was strongly inhibited by resveratrol as effectively as the ascorbic acid/α-tocopherol mixture. Furthermore, antioxidants have a much stronger inhibitory effect on the peroxidation in the presence of 2-mercaptoethanol, and at the same time show protective properties of the double bond, decreasing the cistrans isomerization. Under anaerobic conditions, cistrans isomerization occurred and antioxidants efficiency increased along the series: resveratrol < α-tocopherol?<?ascorbic acid. This result is explained taking into account the double bond localization in the hydrophobic core of the micelle and the need of co-localization of the antioxidant in order to get an anti-isomerizing activity and protection of the natural lipid geometry.  相似文献   

14.
The interaction of water with dehydroascorbic acid was examined by incubating dehydroascorbic acid and ascorbic acid in18O-labeled water for various amounts of time and then oxidizing the products with hydrogen peroxide or reducing the products with mercaptoethanol, with analysis by gas chromatography mass spectrometry. Based on mass changes, dehydroascorbic acid readily exchanged three oxygen atoms with H218O. When mercaptoethanol was used to reduce dehydroascorbic acid (which had been incubated in H218O) to ascorbic acid, the newly formed ascorbic acid also contained three labeled oxygen atoms. However, ascorbic acid incubated in H218O for the same amount of time under identical conditions exchanged only two labeled oxygen atoms. Electron impact mass spectrometry of derivatized ascorbic acid created a decarboxylation product which had only two labeled oxygen atoms, regardless if 3-oxygen-labeled or 2-oxygen-labeled ascorbic acid was the parent compound, isolating the extra oxygen addition to carbon 1. These data suggest that dehydroascorbic acid spontaneously hydrolyzes and dehydrates in aqueous solution and that the hydrolytic-hydroxyl oxygen is accepted by carbon 1. Ascorbic acid, on the other hand, does not show this same tendency to hydrolyze.  相似文献   

15.
Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts.  相似文献   

16.
Oxidative stress contributes towards the development of nonalcoholic steatohepatitis (NASH). Thus, antioxidants may decrease oxidative stress and ameliorate the events contributing to NASH. We hypothesized that α- or γ-tocopherol would protect against lipopolysaccharide (LPS)-triggered NASH in an obese (ob/ob) mouse model. Five-week-old obese mice (n=18/dietary treatment) were provided 15 mg/kg each of α- and γ-tocopherol or 500 mg/kg of α- or γ-tocopherol for 5-weeks. Then, all mice were injected ip once with LPS (250 μg/kg) before being sacrificed at 0, 1.5 or 6 h. Body weight and hepatic steatosis were unaffected by tocopherols and LPS. Hepatic α- and γ-tocopherol increased (P<.05) ~9.8- and 10-fold in respective tocopherol supplemented mice and decreased in response to LPS. LPS increased serum alanine aminotransferase (ALT) by 86% at 6 h and each tocopherol decreased this response by 29–31%. By 6 h, LPS increased hepatic malondialdehyde (MDA) and tumor necrosis factor-α by 81% and 44%, respectively, which were decreased by α- or γ-tocopherol. Serum ALT was correlated (P<.05) to hepatic tumor necrosis factor-α (r=0.585) and MDA (r=0.592), suggesting that inflammation and lipid peroxidation contributed to LPS-triggered hepatic injury. α- and γ-Tocopherol similarly attenuated LPS-triggered increases in serum free fatty acid, and α-tocopherol only maintained the LPS-triggered serum triacylglycerol responses at 6 h. These findings indicate that increasing hepatic α- or γ-tocopherol protected against LPS-induced NASH by decreasing liver damage, lipid peroxidation, and inflammation without affecting body mass or hepatic steatosis. Further study is needed to define the mechanisms by which these tocopherols protected against LPS-triggered NASH.  相似文献   

17.
柠檬酸和抗坏血酸对蝴蝶兰叶外植体褐变发生的影响   总被引:3,自引:0,他引:3  
目的:探究柠檬酸和抗坏血酸对蝴蝶兰叶片外植体褐变发生的影响以及对PPO活性变化影响的作用机理.方法:以褐变率和褐变指数为参考数据,分析柠檬酸和抗坏血酸对外植体PPO活性和PPO反应产物积累的影响以及与外植体褐变发生的关系.结果:分别用100mg/L柠檬酸共培养和50mg/L抗坏血酸浸泡处理叶片外植体,经离体培养3d,褐变率分别比对照降低94.9%和54.9%,离体培养6d,褐变指数低于对照的0.53,分别为0.46和0.36,同时PPO活性降低.结论:推测柠檬酸抑制褐变的原因是直接与酶蛋白作用,抗坏血酸则与新生醌类物质结合.  相似文献   

18.
Both α-tocopherol and a 1: 1.7 mixture of α-tocopherol and tocotrienols at a 0.2% dietary level significantly depressed the age-related increase in the systolic blood pressure of spontaneously hypertensive rats (SHRs) after 3 weeks of feeding. The aortic production of prostacyclin was increased 1.5 times both by α-tocopherol and a tocotrienol mixture, suggesting a possible relevance to their hypotensive effect. These vitamins did not influence the Δ6- and Δ5-desaturase activities of liver microsomes, but fatty acid profiles of the liver phospholipids predicted a reduction of linoleic acid desaturation. These effects were in general more clear with tocotrienols than with α-tocopherol. Platelet aggregation by 5 μM ADP remained uninfluenced. Thus, tocotrienols may have effects on various lipid parameters somewhat different from those of α-tocopherol.  相似文献   

19.
Opisthorchis viverrini infection induces inflammation-mediated oxidative stress and liver injury, which may alter α-tocopherol and lipid metabolism. We investigated plasma α-tocopherol and lipid profiles in hamsters infected with O. viverrini. Levels of α-tocopherol, cholesterol, and low-density lipoprotein increased in the acute phase of infection. In the chronic phase, α-tocopherol decreased, while triglyceride and very low-density lipoprotein increased. Notably, high-density lipoprotein decreased both in the acute and chronic phases. In the liver, cholesteryl oleate, triolein, and oleic acid decreased in the acute phase, and increased in the chronic phase. Such chronological changes were negatively correlated with the plasma α-tocopherol level. The expression of α-tocopherol-related molecules, ATP-binding cassette transporter A1 (ABCA1) and α-tocopherol transfer protein, increased throughout the experiment. These results suggest that O. viverrini infection profoundly affects on lipid and α-tocopherol metabolism in due course of infection.  相似文献   

20.
Rats were cannulated in the major mesenteric lymph duct and given an intraduodenal bolus of unlabeled and α-[3H]tocopherol, and [14C]oleic acid in soybean oil. The appearance of α-tocopherol in lymph was negligible during the first 2 h and peaked 4–15 h after feeding, whereas no detectable amount was recovered in the portal vein. Intestinal absorption via the lymphatic pathway was 15.4 ± 8.9% (n = 10) and 45.9 ± 10.8% (n = 4) for α-tocopherol and [14C]oleic acid, respectively. About 99% of α-tocopherol in lymph was associated with the chylomicron fraction (d < 1.006 g/ml). In non-fasting rats, 51% of serum α-tocopherol was associated with chylomicrons/VLDL (very-low-density lipoprotein, d < 1.006 g/ml) and 47% with HDL (high-density lipoprotein, 1.05 < d < 1.21 g/ml). Our study revealed that the liver, skeletal muscle and adipose tissue contain approx. 92% of the total mass of α-tocopherol measured in ten different organs. Parenchymal and nonparenchymal liver cells contributed to 75% and 25% of the total mass of α-tocopherol in the liver, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号