首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two basidiomycete‐specific primers ITS1‐F and ITS4‐B were used in identification of the genus Puccinia. The primers showed good specificity for the genus with an 816‐bp product that was amplified exclusively. Twenty sequences of internal transcribed spacer (ITS) regions of Puccinia helianthi isolates from China remain unchanged. The whole ITS length (including ITS1 sequence 194 bp, 5.8S rRNA gene 156 bp, ITS2 sequence 206 bp) was 556 bp. By comparing the aligned ITS sequences of several Puccinia isolates from China, Spain and the United States, ITS homogeneity among these sunflower rust isolates was >99%. Genetic homology and phylogeny of P. helianthi with other Puccinia spp. was investigated. Nineteen sequences of rDNA ITS1 and ITS2 were determined and used as phylogenetic markers. Phylogenetic analysis of ITS regions showed that Puccinia spp. of sunflower was clustered in one clade with P. komarovii and P. violae, divergent from Puccinia spp. of Chrysanthemum, P. tenaceti of tansy (Tanacetum vulgare) and Puccina spp. of big sagebrush (Artemisia tridentate) indicating sunflower rust had distant phylogenetic relationships with other Compositae rusts. With the specified primers SR‐1 and SR‐2, either from purified urediniospores or symptomless (but infected) sunflower leaves could be examined specifically. Therefore, results of this study help in detection and polygenetic study of rust fungi occurring on sunflower.  相似文献   

2.
The genus Ditylenchus contains more than 80 recognized nematode species with a very wide host range. The most serious species are Ditylenchus dipsaci and Ditylenchus destructor. Populations of D. dipsaci species complex were collected from Allium cepa, Cichorium endivia and Phlox paniculata in Poland. The Ditylenchus gigas population was collected from Vicia faba minor, and populations of D. destructor, from Solanum tuberosum spp. tuberosum. Analyses of the rDNA sequences spanning both ITS1 and ITS2 fragment regions were carried out on the collected populations. The obtained DNA sequences were compared with those DNA sequences deposited in GenBank of populations isolated in other countries. Phylogenetic analysis was performed using the data obtained from the DNA sequence comparisons. The results indicated that there is no clear distinction between European and non‐European populations within D. dipsaci. The results also showed no clear distinction between populations isolated from different host plant species, including populations found in Poland. The populations of D. destructor described here constitute a common group together with American and Chinese populations belonging to the haplotype C of the D. destructor species. On the other hand, the D. gigas population was localized separately from those populations that have been described up until now, from Europe and Africa. This is also the first report on the occurrence of D. gigas in Poland.  相似文献   

3.
Comprehensive understanding of the patterns and drivers of microbial diversity at a landscape scale is in its infancy, despite the recent ease by which soil communities can be characterized using massively parallel amplicon sequencing. Here we report on a comprehensive analysis of the drivers of diversity distribution and composition of the ecologically and economically important Phytophthora genus from 414 soil samples collected across Australia. We assessed 22 environmental and seven categorical variables as potential predictors of Phytophthora species richness, α and β diversity, including both phylogenetically and non‐phylogenically explicit methods. In addition, we classified each species as putatively native or introduced and examined the distribution with respect to putative origin. The two most widespread species, P. multivora and P. cinnamomi, are introduced, though five of the ten most widely distributed species are putatively native. Introduced taxa comprised over 54% of Australia's Phytophthora diversity and these species are known pathogens of annual and perennial crop habitats as well as urban landscapes and forestry. Patterns of composition were most strongly predicted by bioregion (R2 = 0.29) and ecoregion (R2 = 0.26) identity; mean precipitation of warmest quarter, mean temperature of the wettest quarter and latitude were also highly significant and described approximately 21, 14 and 13% of variation in NMDS composition, respectively. We also found statistically significant evidence for phylogenetic over‐dispersion with respect to key climate variables.This study provides a strong baseline for understanding biogeographical patterns in this important genus as well the impact of key plant pathogens and invasive Phytophthora species in natural ecosystems.  相似文献   

4.
Since the summer 2017, severe decline symptoms have been observed on 10- to 25-year-old avocado trees in almost all commercial orchards planted in the Mediterranean coastal region of Turkey. Young, newly planted trees in infected orchards were also affected by the disease. Affected trees showed wilting, leaf discoloration, defoliation and severe dieback. Some trees were completely desiccated. Although fine roots of symptomatic trees usually were decayed, reddish brown cankers also occurred on taproots and lateral roots of heavily infected trees. The pathogens were isolated from necrotic root and soil samples of symptomatic trees, using selective medium and soil baiting, and were identified based on morphological features and DNA sequences of the internal transcribed spacer (ITS) region. One isolate each of Phytophthora cryptogea and P. palmivora was identified, while all other isolates were P. cinnamomi. In addition, a subcortical fan-shaped mycelium, characteristic of Armillaria spp., was observed in the stem base of a symptomatic tree and identified as Armillaria gallica by DNA sequences of the internal transcribed spacer (ITS) and the translational elongation factor 1-α (EF 1-α) gene regions. Pathogenicity of Phytophthora isolates was tested by stem inoculation on one-year-old avocado seedlings. Two months after inoculation, canker lesions developed on stems of seedlings inoculated by any of the three Phytophthora spp. In contrast, collenchyma callus formed over the wound points on control plants over the same time period. This is the first report of P. cinnamomi, P. cryptogea, P. palmivora and A. gallica causing root rot of avocado trees in Turkey. In addition, P. cryptogea and A. gallica are reported for the first time associated with disease on this host. Due to the severe symptoms and widespread occurrence, P. cinnamomi should be considered a potential threat to avocado cultivation and natural ecosystems of this region of Turkey.  相似文献   

5.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

6.
7.
The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.  相似文献   

8.
The genus Pseudo‐nitzschia contains potentially toxic species of problematic taxonomy, making it one of the most intensively studied diatom genera. The study of 35 clonal strains isolated from the Bilbao estuary, an area that experiences recurrent blooms of Pseudo‐nitzschia, revealed the presence of two new species, P. abrensis and P. plurisecta, differing from their congeners in both morphology and gene sequence. The morphological features were analyzed by LM and EM, whereas molecular analyses were based on the internal transcribed spacer (ITS) and large subunit (LSU) regions of the rDNA. P. plurisecta appears closely related to P. cuspidata/P. pseudodelicatissima in the phylogenetic tree, whereas P. abrensis forms a moderately supported clade with P. heimii/P. subpacifica and P. caciantha/P. circumpora. Comparison of the secondary structure of ITS2 regions reveals marked differences in the most highly conserved regions among related taxa. Morphologically, the new species differ from their closest congeners in the arrangement of the poroid sectors and the density of valve striae and fibulae. The two species share similar pigment composition, and belong to the group of Pseudo‐nitzschia species containing only chlorophyll c2 and c3.  相似文献   

9.
10.
Walnut decline caused by Phytophthora sp. occurred in an orchard in Sakarya province in Turkey. Affected young trees showed poor growth, leaf discolouration, root and crown rot and eventual death. A Phytophthora sp. isolated from necrotic taproots and crown tissues. The causal agent of the disease was identified as Phytophthora cinnamomi by morphological characteristics and comparing sequences of internal transcribed spacer (ITS) region. Upon conducting pathogenicity test, averaging 7.8‐cm‐long canker developed on basal stem within 2 weeks, while no cankers developed in the control plants.  相似文献   

11.
Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) are frequently misidentified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding unreliable. We DNA barcoded 295 individual distromatic foliose strains of Ulva from the North-East Atlantic for three loci (rbcL, tufA, ITS1). Seven distinct species were found, and we compared our results with all worldwide Ulva spp. sequences present in the NCBI database for the three barcodes rbcL, tufA and the ITS1. Our results demonstrate a large degree of species misidentification, where we estimate that 24%–32% of the entries pertaining to foliose species are misannotated and provide an exhaustive list of NCBI sequences reannotations. An analysis of the global distribution of registered samples from foliose species also indicates possible geographical isolation for some species, and the absence of U. lactuca from Northern Europe. We extended our analytical framework to three other genera, Fucus, Porphyra and Pyropia and also identified erroneously labelled accessions and possibly new synonymies, albeit less than for Ulva spp. Altogether, exhaustive taxonomic clarification by aggregation of a library of barcode sequences highlights misannotations and delivers an improved representation of species diversity and distribution.  相似文献   

12.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

13.
Many Phytophthora species are pathogens on fruit trees and may cause destructive diseases. In the current study, we examined six Phytophthora isolates recovered from rivers in Bulgaria, representatives of the following three species: Phytophthora chlamydospora, Ppseudocryptogea and Psyringae. Morphological traits, cardinal temperatures and growth rates of the isolates were described. We found considerable variation in the size of sporangia and significant difference in the mycelial growth rates of the two P. pseudocryptogea isolates, along with multiple polymorphic sites in the ITS region of one of them. In the cases of the other two Phytophthora species, no such differences were found between the isolates. Both Pchlamydospora isolates had a lower optimum growth temperature compared with the reported in the literature for this species. In pathogenicity tests against leaves and fruits of apple, pear, cherry, apricot and plum, the isolates proved to be capable of causing infections with varying severity. Pchlamydospora showed to be the most aggressive towards the leaves, while Ppseudocryptogea isolates induced the highest percentage of decay on the fruits of all tested tree species, which may suggest partial organ or tissue specificity. The demonstrated infection capacity of the described isolates points out the investigated Phytophthora species as a potential threat for the orchards in Bulgaria, if favourable conditions are available.  相似文献   

14.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

15.
Microsporidia are opportunistic pathogens that infect a wide range of invertebrates and vertebrates. To assess the potential role of dogs in the transmission of these zoonotic pathogens, a total of 282 fecal samples from dogs in the Central Anatolia Region of Turkey were analyzed by utilizing species specific polymerase chain reaction for the four most frequent human microsporidia. Two microsporidia species were recognized in 41 samples (14.5%). Encephalitozoon intestinalis was detected in 35 samples (12.4%) and it was the most common microsporidium. The second microsporidium, E. cuniculi, was identified in six (2.1%) of the samples. Sequence analysis of the intergenic spacer of the ribosomal ribonucleic acid (RNA) internal transcribed spacer (ITS) gene revealed the presence of three E. intestinalis haplotypes closely associated with each other. No polymorphic region was found among the ITS sequences of E. cuniculi isolates and they were characterized as genotype III. This study provides the first data on the zoonotic microsporidia species from dogs in Turkey.  相似文献   

16.
Cotton blight, caused by the oomycete Phytophthora boehmeriae, is a serious disease of cotton in China. In wet weather conditions, P. boehmeriae is usually the primary pathogen, followed by many saprophytic fungi and pathogens such as Pythium spp., Fusarium spp., Rhizoctonia and others. As P. boehmeriae grows much slower than other pathogens, it is difficult to isolate and identify. A rapid and accurate method for its specific identification is necessary for the detection of blight in infected cotton tissue. The internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) from three isolates of P. boehmeriae were amplified using the polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. PCR products were cloned and sequenced. The sequences were aligned with those published of 50 other Phytophthora species, and a region specific to P. boehmeriae was used to construct the specific PCR primers PB1 and PB2. Over 106 isolates of 14 Phytophthora species and at least 20 other fungal species were used to check the specificity of the primers. PCR amplification with primers PB1 and PB2 resulted in the amplification of a product of approximately 750 bp only from isolates of P. boehmeriae. Using primers PB1 and PB2, detection sensitivity was approximately 10 fg DNA/μl. In inoculated plant material, P. boehmeriae could be detected in tissue 1 day after inoculation, prior to the appearance of symptoms. The PB primer‐based PCR assay provides an accurate and sensitive method for detecting P. boehmeriae in cotton tissue.  相似文献   

17.
18.
19.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

20.
The genus Corydalis is recognized as one of the most taxonomically challenging plant taxa. It is mainly distributed in the Himalaya–Hengduan Mountains, a global biodiversity hotspot. To date, no effective solution for species discrimination and taxonomic assignment in Corydalis has been developed. In this study, five nuclear and chloroplast DNA regions, ITS, ITS2, matK, rbcL, and psbA‐trnH, were preliminarily assessed based on their ability to discriminate Corydalis to eliminate inefficient regions, and the three regions showing good performance (ITS, ITS2 and matK) were then evaluated in 131 samples representing 28 species of 11 sections of four subgenera in Corydalis using three analytical methods (NJ, ML, MP tree; K2P‐distance and BLAST). The results showed that the various approaches exhibit different species identification power and that BLAST shows the best performance among the tested approaches. A comparison of different barcodes indicated that among the single barcodes, ITS (65.2%) exhibited the highest identification success rate and that the combination of ITS + matK (69.6%) provided the highest species resolution among all single barcodes and their combinations. Three Pharmacopoeia‐recorded medicinal plants and their materia medica were identified successfully based on the ITS and ITS2 regions. In the phylogenetic analysis, the sections Thalictrifoliae, Sophorocapnos, Racemosae, Aulacostigma, and Corydalis formed well‐supported separate lineages. We thus hypothesize that the five sections should be classified as an independent subgenus and that the genus should be divided into three subgenera. In this study, DNA barcoding provided relatively high species discrimination power, indicating that it can be used for species discrimination in this taxonomically complicated genus and as a potential tool for the authentication of materia medica belonging to Corydalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号