首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host resistance is the most economical way to manage wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Slow rusting, a type of quantitative resistance, has been reported to last for a long time. Quantitative resistance, in terms of slow rusting parameters including final rust severity (FRS), apparent infection rate (r), relative area under disease progress curve (rAUDPC) and coefficient of infection (CI), was evaluated in a set of 29 wheat genotypes along with susceptible control during 2008–2009 and 2009–2010 cropping seasons. This study was conducted in field plots at Ardabil Agricultural Research Station (Iran) under natural infection conditions with two times artificial inoculation. Artificial inoculation was carried out by yellow rust inoculum having virulent genes against Yr2, Yr6, Yr7, Yr9, Yr22, Yr23, Yr24, Yr25, Yr26, Yr27, YrA and YrSU. Results of mean comparison for resistance parameters showed that lines C-86-1, C-86-2, C-87-1 and C-87-3 along with susceptible had the highest values of FRS, CI, r and rAUDPC, therefore were selected as susceptible lines. The lines C-86-3, C-86-9, C-87-2, C-87-6, C-87-8, C-87-11 and C-87-18 were susceptible at the seedling stage and had low level infection at adult plant stage. Consequently, these lines with low different parameters most probably have slow rusting resistance. The remaining lines had no infection or were at low level of infection. Thus, they were selected as resistant or moderately resistant lines. In this study, correlation coefficient between different parameters of slow rusting was significantly high (r = 0.92–0.99).  相似文献   

2.
Race‐specific resistance of wheat (Triticum aestivum L.) to yellow rust caused by Puccinia striiformis Westend. f.sp. tritici is often short‐lived. Slow‐rusting resistance has been reported to be a more durable type of resistance. A set of sixteen bread wheat varieties along with a susceptible control Morocco was tested during 2004–05 to 2006–07 in field plots at Peshawar (Pakistan) to identify slow rusting genotypes through epidemiological variables including final rust severity (FRS), apparent infection rate (r), area under disease progress curve (AUDPC), average coefficients of infection (ACI) and leaf tip necrosis (LTN). Epidemiological parameters of resistance were significantly (P < 0.01) different for years/varieties in three seasons, while variety × year interactions remained non‐significant. Sequence tagged site (STS) marker, csLV34 analyses revealed that cultivars Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93, Faisalabad‐85, Shahkar‐95 and Kohsar‐95 possessed Yr18 linked allele. Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93 and Faisalabad‐85 were relatively more stable over 3‐years where FRS, AUDPC and r values reduced by 80, 84 and 70% respectively compared to control Morocco. These six varieties therefore could be exploited for the deployment of Yr18 in breeding for slow rusting in wheat. Both FRS and ACI are suitable parameters for phenotypic selection.  相似文献   

3.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

4.
Yellow rust caused by Puccinia striiformis f. sp. hordei is an important disease of barley (Hordeum vulgare L.) in some parts of the world. We compared the effectiveness of different types of resistance in field plots at Ardabil Agricultural Research Station (Iran) during 2010–2011. Yield components along with slow rusting parameters including final rust severity (FRS), apparent infection rate (r), relative area under disease progress curve (rAUDPC) and coefficient of infection (CI) were evaluated for 25 barley cultivars. In all, two barley cultivars with race-specific resistance, 19 cultivars with different levels of slow rusting resistance and four susceptible cultivars were included in two experiments with and without fungicide protection under high disease pressure. Barley cultivars with slow rusting resistance displayed a range of severity responses indicating phenotypic diversity. Mean thousand kernels weight (TKW) losses for susceptible, race-specific and slow rusting genotypes were 31, 3 and 12%, respectively, and mean kernels per spike (KPS) losses for susceptible, race-specific and slow rusting genotypes were 19, 0.2 and 8%, respectively. Correlation coefficient of mean TKW and KPS losses with epidemiological parameters; rAUDPC, r, CI and FRS were highly significant. Slow rusting cultivars with low values of different parameters as well as genotypes with low yield component losses despite moderate disease levels were identified. Such genotypes can be used for breeding barely genotypes with high levels of resistance and negligible yield losses.  相似文献   

5.
本研究旨在明确小麦农家品种中可能含有的抗叶锈病基因,为抗源的选择和利用提供理论依据。以15个小麦农家品种、感病对照品种郑州5389和36个含有已知抗叶锈病基因的载体品种为材料,苗期接种19个具有鉴别力的叶锈菌生理小种进行基因推导,同时利用12个与抗叶锈病基因紧密连锁的分子标记进行分析。为明确其成株期抗性,分别于2016-2017年和2017-2018年在河北保定对小麦农家品种、感病对照品种郑州5389与慢锈品种SAAR进行田间接种,调查并记录田间严重度及普遍率。基因推导和分子标记检测结果显示,在15个小麦农家品种中共检测到7个抗叶锈病基因,其中部分品种还有多个抗性基因,如红狗豆含有Lr1和Lr46;黄花麦含有Lr13和Lr34;大白麦含有Lr14b和Lr26;洋麦含有Lr37和Lr46;成都光头含有Lr34和Lr46;墨脱麦和西山扁穗含有Lr26和Lr46。部分品种含有1个成株期慢叶锈病抗性基因,如同家坝小麦、武都白茧儿、边巴春麦-6、白花麦含有Lr34;红抢麦、白扁穗和白火麦含有Lr46。这些携带有效抗叶锈病基因的农家品种,可为小麦抗叶锈病育种提供抗源。  相似文献   

6.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

7.
8个小麦育种亲本抗叶锈基因分析   总被引:1,自引:0,他引:1  
选取19个小麦叶锈菌生理小种对8个小麦育种亲本进行成株期和苗期抗叶锈病鉴定及基因推导,同时利用与24个抗叶锈基因紧密连锁或共分离的31个分子标记进行分子检测。推测出L83#-5与L83#-6含有Lr1,可能含有Lr2c和Lr42;L/PL2003-1含有Lr1,可能含有Lr2c、Lr28和Lr42;贵农13号可能含有Lr28;92R137可能含有Lr2c和Lr28;L201含有Lr1,可能含有Lr2c、Lr16和Lr28;TM可能含有Lr41和其他抗叶锈基因。研究结果表明,测试的8个小麦育种亲本中TM的抗叶锈性最好,具有很好的抗叶锈病应用潜力,可作为小麦抗叶锈病育种的重要抗源。  相似文献   

8.
2003-2013年小麦品种(系)抗条锈性鉴定及评价   总被引:3,自引:0,他引:3  
2003-2013年在甘肃省农业科学院植物保护研究所兰州温室和甘谷试验站,分别对来自国内35个相关育种单位的冬春小麦品种(系)5001份,其中冬小麦4291份、春小麦710份,进行苗期混合菌、成株期分小种和混合菌抗条锈性接种鉴定,结果表明:全生育期表现免疫近免疫的有兰天31号等479份,高抗的有兰天23号等76份,中抗的有天选49等291份,分别占9.58%、1.52%和5.82%;成株期表现免疫近免疫的有天选50号等840份,高抗的有兰天27号等47份,中抗的有天选52等311份,分别占16.80%、0.94%和6.22%;苗期表现免疫近免疫的有兰天30号等964份,高抗的有天98102等122份,中抗的有00-30等273份,分别占19.28%、2.44%和5.46%.冬小麦有天选49号等914份材料表现全生育期抗病,占18.28%;有97-473等906份成株期表现抗病,占18.12%;有兰天20号等1225份苗期表现抗病,占24.50%.春小麦有定西41号等113份材料全生育期表现抗病,占2.26%;有陇春28号等125份成株期表现抗病,占2.50%;有0109-1等114份苗期对混合菌表现抗病,占2.28%.先后在甘肃天水汪川良种场对相关材料进行成株期抗条锈性评价,结果发现:1154份从小种圃筛选出的抗病材料中,表现抗病的有兰天31号等745份,占64.56%;105份甘肃陇南生产品种中,到2013年表现抗病的仅有兰天28号、中梁31号等30份材料,占28.57%;后备品系中,00-30-2-1、CP04-20、00127-2-3等抗性表现优异;抗源材料中,仅有贵农775、中四、T.Spelta albun、贵协1、贵协3等少数材料表现抗病,重要抗源材料贵农21、贵农22、南农92R、川麦42、Moro从2011年开始在田间表现感病,逐步失去利用价值.其衍生系品种材料如陇鉴9343、天选43号、中梁29号、兰天17号、兰天24号等也在田间逐步感病,条锈病发生流行压力持续增大.  相似文献   

9.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

10.
Stripe rust (yellow rust), caused by Puccinia striiformis f.sp. tritici (Pst), is a serious disease of wheat worldwide, including China. Growing resistant cultivars is the most cost‐effective and environmentally friendly approach to control the disease. To assess the stripe rust resistance in commercial wheat cultivars and advanced lines in the Yellow and Huai River Valley Wheat Region, 115 wheat cultivars (lines) collected from 13 provinces in this region were evaluated with the most prevalent Chinese Pst races CYR32, CYR33 and the new race V26 at seedling stage. In addition, these wheat entries were inoculated with the mixed races of CYR32 and CYR33 at the adult‐plant stage in the field. The results indicated that 53 (46.1%) cultivars (lines) had all‐stage resistance to all the three races, and 16 (13.9%) cultivars (lines) showed adult‐plant resistance. The possible stripe rust resistance genes in these entries were postulated by the closely linked markers of all‐stage resistance genes Yr5, Yr9, Yr10, Yr15 and Yr26 and adult‐plant resistance gene Yr18. Molecular analysis indicated that resistance genes Yr5, Yr9, Yr10, Yr18 and Yr26 were found in 5 (4.3%), 38 (33.0%), 1 (0.9%), 2 (1.7%) and 8 (7.0%) entries, respectively. No entry was found to carry the Yr15 gene. In future breeding programs, Yr5, Yr15 and Yr18 should be used to pyramid with other effective genes to develop wheat cultivars with high‐level and durable resistance to stripe rust, whereas Yr9, Yr10 and Yr26 should not be used or used in a limited way due to the virulent races present in China.  相似文献   

11.
Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK.  相似文献   

12.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

13.
Stable resistance to infection with Wheat streak mosaic virus (WSMV) can be evolved de novo in selfing bread wheat lines subjected to cycles of WSMV inoculation and selection of best-performing plants or tillers. To learn whether this phenomenon might be applied to evolve resistance de novo to pathogens unrelated to WSMV, we examined the responses to leaf rust of succeeding generations of the rust- and WSMV-susceptible cultivar ‘Lakin’ following WSMV inoculation and derived rust-resistant sublines. After three cycles of the iterative protocol five plants, in contrast to all others, expressed resistance to leaf and stripe rust. A subset of descendant sublines of one of these, ‘R1’, heritably and uniformly expressed the new trait of resistance to leaf rust. Such sublines, into which no genes from a known source of resistance had been introgressed, conferred resistance to progeny of crosses with susceptible parents. The F1 populations produced from crosses between, respectively, susceptible and resistant ‘Lakin’ sublines 4-3-3 and 4-12-3 were not all uniform in their response to seedling inoculation with race TDBG. In seedling tests against TDBG and MKPS races the F2s from F1 populations that were uniformly resistant had 3∶1 ratios of resistant to susceptible individuals but the F2s from susceptible F1 progenitors were uniformly susceptible. True-breeding lines derived from resistant individuals in F2 populations were resistant to natural stripe and leaf rust inoculum in the field, while the ‘Lakin’ progenitor was susceptible. The next generation of six of the ‘Lakin’-derived lines exhibited moderate to strong de novo resistance to stem rust races TPMK, QFCS and RKQQ in seedling tests while the ‘Lakin’ progenitor was susceptible. These apparently epigenetic effects in response to virus infection may help researchers fashion a new tool that expands the range of genetic resources already available in adapted germplasm.  相似文献   

14.
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.  相似文献   

15.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

16.
Martínez F  Niks RE  Singh RP  Rubiales D 《Hereditas》2001,135(2-3):111-114
Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.  相似文献   

17.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

18.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

19.
Genetic Analysis of the Latent Period of Stripe Rust in Wheat Seedlings   总被引:1,自引:0,他引:1  
Genetics of slow‐rusting resistance to yellow rust (Puccinia striiformis f.sp. tritici) was studied by a half‐diallel design using six wheat varieties, Tiritea (susceptible), Tancred, Kotare, Otane, Karamu, and Briscard. The parents and 15 F1 progenies were evaluated in the greenhouse by three pathotypes 7E18A?, 38E0A+, and 134E134A+. The latent period was measured as the number of days from inoculation to the appearance of the first pustule. For each pathotype a randomized complete block design was used and data were analysed by methods of Griffing and Hayman. The range of average degree of dominance was from complete dominance to over‐dominance. Positive and negative degrees of dominance were observed for each pathotype that showed the reversal of dominance. Analysis of variance showed the importance of both additive and dominance effects in controlling the latent period. Broad‐sense heritabilities were 0.99 and narrow‐sense heritabilities ranged from 0.85 to 0.94. Briscard and Karamu for the pathotypes 38E0A+ and 134E134A+, Kotare for the pathotype 7E18A? and Tancred for the pathotype 38E0A+ had significant and positive general combining ability (GCA) (more resistance) for latent period. The crosses of Kotare with Tancred, Briscard and Karamu indicated the highest and positive specific combining ability (SCA) for the pathotype 7E18A?. Significant additive genetic component and moderate narrow‐sense heritability indicate the possibility of improving for longer latent period of stripe rust in breeding programmes.  相似文献   

20.
黄淮麦区小麦品种(系)中Yr26基因的SSR检测   总被引:1,自引:0,他引:1  
选用与Yr26紧密连锁的SSR标记Xgwm11和Xgwm18结合田间抗性鉴定,对239份黄淮麦区小麦品种(系)进行检测,以明确Yr26基因在黄淮麦区小麦品种资源中的分布.结果表明:共有35份品种(系)含有与Yr26紧密连锁的SSR标记Xgwm18或Xgwm11的特征带,占检测样本的14.6%.在这35份材料中,31份田间抗性鉴定表现免疫至中抗,4份表现中感.分子标记检测与田间抗病性检测吻合度较好,该标记可以用于Yr26基因的分子标记辅助选择.综合分子标记和田间鉴定,31份小麦(系)含有Yr26基因,占102份抗病材料的30.39%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号