首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragile X Mental Retardation Syndrome is the most common form of hereditary mental retardation, and is caused by defects in the FMR1 gene. FMR1 is an RNA-binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. The specific function of FMR1 is not known. As a step towards understanding the function of FMR1 we searched for proteins that interact with it in vivo. We have cloned and sequenced a protein that interacts tightly with FMR1 in vivo and in vitro. This novel protein, FXR2, is very similar to FMR1 (60% identity). FXR2 encodes a 74 kDa protein which, like FMR1, contains two KH domains, has the capacity to bind RNA and is localized to the cytoplasm. The FXR2 gene is located on human chromosome 17 at 17p13.1. In addition, FMR1 and FXR2 interact tightly with the recently described autosomal homolog FXR1. Each of these three proteins is capable of forming heteromers with the others, and each can also form homomers. FXR1 and FXR2 are thus likely to play important roles in the function of FMR1 and in the pathogenesis of the Fragile X Mental Retardation Syndrome.  相似文献   

2.

Background

Expansion of the CGG trinucleotide repeat in the 5′-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs are locally translated in response to stimuli.

Methodology/Principal Findings

Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 Å, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9.

Conclusions

The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   

3.
Fragile X syndrome is the most common inherited form of mental retardation. It is caused by loss of FMR1 gene activity due to either lack of expression or expression of a mutant form of the protein. In mammals, FMR1 is a member of a small protein family that consists of FMR1, FXR1, and FXR2. All three members bind RNA and contain sequence motifs that are commonly found in RNA-binding proteins, including two KH domains and an RGG box. The FMR1/FXR proteins also contain a 60S ribosomal subunit interaction domain and a protein-protein interaction domain which mediates homomer and heteromer formation with each family member. Nevertheless, the specific molecular functions of FMR1/FXR proteins are unknown. Here we report the cloning and characterization of a Drosophila melanogaster homolog of the mammalian FMR1/FXR gene family. This first invertebrate homolog, termed dfmr1, has a high degree of amino acid sequence identity/similarity with the defined functional domains of the FMR1/FXR proteins. The dfmr1 product binds RNA and is similar in subcellular localization and embryonic expression pattern to the mammalian FMR1/FXR proteins. Overexpression of dfmr1 driven by the UAS-GAL4 system leads to apoptotic cell loss in all adult Drosophila tissues examined. This phenotype is dependent on the activity of the KH domains. The ability to induce a dominant phenotype by overexpressing dfmr1 opens the possibility of using genetic approaches in Drosophila to identify the pathways in which the FMR1/FXR proteins function.  相似文献   

4.
The fragile X syndrome, an X-linked disease, is the most frequent cause of inherited mental retardation. The syndrome results from the absence of expression of the FMR1 gene (fragile mental retardation 1) owing to the expansion of a CGG trinucleotide repeat located in the 5' untranslated region of the gene and the subsequent methylation of its CpG island. The FMR1 gene product (FMRP) is a cytoplasmic protein that contains two KH domains and one RGG box, characteristics of RNA-binding proteins. FMRP is associated with mRNP complexes containing poly(A)+mRNA within actively translating polyribosomes and contains nuclear localization and export signals making it a putative transporter (chaperone) of mRNA from the nucleus to the cytoplasm. FMRP is the archetype of a novel family of cytoplasmic RNA-binding proteins that includes FXR1P and FXR2P. Both of these proteins are very similar in overall structure to FMRP and are also associated with cytoplasmic mRNPs. Members of the FMR family are widely expressed in mouse and human tissues, albeit at various levels, and seem to play a subtle choreography of expression. FMRP is most abundant in neurons and is absent in muscle. FXR1P is strongly expressed in muscle and low levels are detected in neurons. The complex expression patterns of the FMR1 gene family in different cells and tissues suggest that independent, however similar, functions for each of the three FMR-related proteins might be expected in the selection and metabolism of tissue-specific classes of mRNA. The molecular mechanisms altered in cells lacking FMRP still remain to be elucidated as well as the putative role(s) of FXR1P and FXR2P as compensatory molecules.  相似文献   

5.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   

6.
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.  相似文献   

7.
Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.  相似文献   

8.
RNA and microRNAs in fragile X mental retardation   总被引:1,自引:0,他引:1  
Fragile X syndrome is caused by the loss of an RNA-binding protein called FMRP (for fragile X mental retardation protein). FMRP seems to influence synaptic plasticity through its role in mRNA transport and translational regulation. Recent advances include the identification of mRNA ligands, FMRP-mediated mRNA transport and the neuronal consequence of FMRP deficiency. FMRP was also recently linked to the microRNA pathway. These advances provide mechanistic insight into this disorder, and into learning and memory in general.  相似文献   

9.
From personal observations and reported cases of translocation X-Autosome, a study of the breakpoint showed that Xp11 is more frequently associated to mental retardation. This finding is in agreement with linkage analysis in families with X-linked mental retardation non X-fra.  相似文献   

10.
11.
Evidence is reviewed that the consequences of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation are exaggerated in the absence of the fragile X mental retardation protein, likely reflecting altered dendritic protein synthesis. Abnormal mGluR signaling could be responsible for remarkably diverse psychiatric and neurological symptoms in fragile X syndrome, including delayed cognitive development, seizures, anxiety, movement disorders and obesity.  相似文献   

12.
Summary The coinical and cytogenetic features of 15 families with mental retardation linked to the fragile site on the X chromosome are presented.The 15 propositi were all prepubertal, and one was a girl. Although the clinical picture varied in severity, it was sufficiently constant to suggest the diagnosis from the facial features and the encephalopathy with language retardation and disturbed behavior. Macroorchidism was not seen before puberty.The fragile X chromosome was found in seven of the nine mothers studied and in two mildly retarded sisters and has also been demonstrated in fibroblasts in eleven subjects with the abnormality.Supported by grants from INSERM (ATP 79-110)  相似文献   

13.
14.
Summary The population genetics implications of the premutation hypothesis for the generation of the fragile X mental retardation gene are explored. With some broad assumptions, the consequences of the model are that (a) 50% of mothers of probands carry the premutation; (b) 6.5% of mothers of probands receive the premutation from their mothers, 18.9% from their fathers, and 24.6% as a new mutation; (c) the incidence of carriers for the full mutation equals the incidence of affected males, whereas the incidence of carriers for the premutation is 1.35 times the incidence of affected males; (d) assuming mutation rates are equal in eggs and sperm, the mutation rate from normal to premutation alleles is 1.67x10-4; (e) the expected segregation ratio in sibs of probands is 0.44, which corresponds to observed values. In addition, predictions using the premutation hypothesis of the expected segregation ratio in sibs of mothers of probands fits well with the data of Vogel and coworkers.  相似文献   

15.
Xu S  Poidevin M  Han E  Bi J  Jin P 《PloS one》2012,7(5):e37937
Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP). The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs), and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281) with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s) underlying the altered circadian rhythms associated with loss of dFmr1.  相似文献   

16.
17.
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.  相似文献   

18.
Fragile X Syndrome (FraX) is a broad-spectrum neurological disorder with symptoms ranging from hyperexcitability to mental retardation and autism. Loss of the fragile X mental retardation 1 (fmr1) gene product, the mRNA-binding translational regulator FMRP, causes structural over-elaboration of dendritic and axonal processes, as well as functional alterations in synaptic plasticity at maturity. It is unclear, however, whether FraX is primarily a disease of development, a disease of plasticity or both: a distinction that is vital for engineering intervention strategies. To address this crucial issue, we have used the Drosophila FraX model to investigate the developmental function of Drosophila FMRP (dFMRP). dFMRP expression and regulation of chickadee/profilin coincides with a transient window of late brain development. During this time, dFMRP is positively regulated by sensory input activity, and is required to limit axon growth and for efficient activity-dependent pruning of axon branches in the Mushroom Body learning/memory center. These results demonstrate that dFMRP has a primary role in activity-dependent neural circuit refinement during late brain development.  相似文献   

19.

Background

BC RNAs and the fragile X mental retardation protein (FMRP) are translational repressors that have been implicated in the control of local protein synthesis at the synapse. Work with BC1 and Fmr1 animal models has revealed that phenotypical consequences resulting from the absence of either BC1 RNA or FMRP are remarkably similar. To establish functional interactions between BC1 RNA and FMRP is important for our understanding of how local protein synthesis regulates neuronal excitability.

Methodology/Principal Findings

We generated BC1−/− Fmr1−/− double knockout (dKO) mice. We examined such animals, lacking both BC1 RNA and FMRP, in comparison with single knockout (sKO) animals lacking either one repressor. Analysis of neural phenotypical output revealed that at least three attributes of brain functionality are subject to control by both BC1 RNA and FMRP: neuronal network excitability, epileptogenesis, and place learning. The severity of CA3 pyramidal cell hyperexcitability was significantly higher in BC1−/− Fmr1−/− dKO preparations than in the respective sKO preparations, as was seizure susceptibility of BC1−/− Fmr1−/− dKO animals in response to auditory stimulation. In place learning, BC1−/− Fmr1−/− dKO animals were severely impaired, in contrast to BC1−/− or Fmr1−/− sKO animals which exhibited only mild deficits.

Conclusions/Significance

Our data indicate that BC1 RNA and FMRP operate in sequential-independent fashion. They suggest that the molecular interplay between two translational repressors directly impacts brain functionality.  相似文献   

20.
The CGG triplet repeat found within the 5'UTR of the FMR1 gene is involved in the pathogenesis of both fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). The repeat has been shown to form both hairpins and tetraplexes in DNA; however, the secondary structure of CGG-repeat RNA has not been well defined. To this end, we have performed NMR spectroscopy on in vitro transcribed CGG-repeat RNAs and see clear evidence of intramolecular hairpins, with no evidence of tetraplex structures. Both C*G and G*G base pairs form in the hairpin stem, though in a dynamic equilibrium of conformations. In addition, we investigated the effect of an AGG repeat interruption on hairpin stability; such interruptions are often interspersed within the CGG repeat element and are thought to modulate secondary structure of the RNA. While the AGG repeat lowers the Tm of the hairpin at low Mg2+ concentrations, this difference disappears at physiological Mg2+ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号