首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro leishmanicidal activity of miltefosine? (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.  相似文献   

2.
S Brewster  D C Barker 《Gene》1999,235(1-2):77-84
Here we investigate the similarities in the kinetoplastid RNA editing process between human- and lizard-infecting Leishmania species. We present the sequence of the maxicircle-encoded ATPase subunit 6 gene from L. (V.) panamensis, L. (L.) mexicana and L. (L.) donovani species of human-infecting Leishmania. These represent the first available sequences of this gene from Leishmania species other than the lizard-infecting L. tarentolae. The gene sequences are highly conserved, both over the edited and unedited parts of the gene, implying that the RNA editing process is likely to be highly conserved between Leishmania species. Indeed, the first editing domain is absolutely conserved in all three Leishmania species studied and L. tarentolae. A phylogeny based on part of the ATPase subunit 6 gene placed the lizard-infecting Leishmania within the monophyletic Leishmania genus, supporting previous data which suggest that lizard- and human-infecting Leishmania species are closely related.  相似文献   

3.
Infection of dendritic cells by the human protozoal parasite Leishmania is part of its survival strategy. The dendritic cell receptors for Leishmania have not been established and might differ in their interactions among Leishmania species and infective stages. We present evidence that the surface C-type lectin DC-SIGN (CD 209) is a receptor for promastigote and amastigote infective stages from both visceral (Leishmania infantum) and New World cutaneous (Leishmania pifanoi) Leishmania species, but not for Leishmania major metacyclic promastigotes, an Old World species causing cutaneous leishmaniasis. Leishmania binding to DC-SIGN was found to be independent of lipophosphoglycan, the major glycoconjugate of the promastigote plasma membrane. Our findings emphasize the relevance of DC-SIGN in Leishmania-dendritic cell interactions, an essential link between innate and Leishmania-specific adaptive immune responses, and suggest that DC-SIGN might be a therapeutic target for both visceral and cutaneous leishmaniasis  相似文献   

4.
The minicircle molecules present in the kinetoplast DNA (kDNA) network constitute a particularly useful molecular tool because they are a multicopy target and present a variable region that differs among minicircle classes in the same network. Using the polymerase chain reaction (PCR) and a set of primers directed outwardly from the minicircle conserved region, it is possible to prepare molecular probes representing the pool of variable regions from the different minicircle classes in the kDNA. In order to examine the specificity of the minicircle variable region as hybridization probes in Leishmania (Viannia) species, such fragments were amplified from reference strains and from a panel of isolates representing the zymodeme diversity of Leishmania (Viannia) in Colombia. The size of the amplified products was conserved in Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis, and Leishmania (Viannia) panamensis (650 bp) and diverged in Leishmania (Viannia) equatorensis and Leishmania (Viannia) colombiensis (850 bp). The amplified products were further hybridized to variable region pools of Leishmania braziliensis, Leishmania panamensis, Leishmania guyanensis, and Leishmania equatorensis reference strains. The results obtained from the hybridization experiments support this approach as a means of defining relationships among strains. Hybridization allowed homologies to be perceived, whereas restriction fragment length analysis of the amplified products yielded strain-specific profiles. Apparently, L. (V.) equatorensis and L. (V.) colombiensis minicircle variable regions have no or only low homology with those of other Leishmania (Viannia) species, showing the divergence of those species within the subgenus.  相似文献   

5.
The metabolism of protozoan parasites of the Leishmania genus is strongly based on amino acid consumption, but little is known about amino acid uptake in these organisms. In the present work, we identified a Leishmania amazonensis gene (La-PAT1) encoding a putative amino acid transporter that belongs to the amino acid/auxin permease family, a group of H(+)/amino acid symporters. This single copy gene is upregulated in amastigotes, the life cycle stage found in the mammalian host. La-PAT1 putative orthologous sequences were identified in Leishmania infantum, Leishmania donovani, Leishmania major and Trypanosoma.  相似文献   

6.
7.
ABSTRACT. The relationships of the Leishmania hertigi complex and the lizard Leishmania species to the main groups of mammalian Leishmania and Endotrypanum parasites were examined. Restriction fragment length polymorphisms and sequences of small subunit ribosomal RNA genes and hybridization studies of kinetoplast DNA indicated that the L. hertigi complex was more closely related to the genus Endotrypanum than to the genus Leishmania . The lizard Leishmania species were found to be at the crown of the Leishmania tree. The data provides strong evidence for a Neotropical origin of the Endotrypanum/Leishmania clade since the parasites closest to the root of the tree are all found exclusively in the Neotropics. The evolution of the Leishmania/Endotrypanum clade in relation to the evolution of the known hosts of these parasites is discussed.  相似文献   

8.
Global gene expression in Leishmania   总被引:1,自引:0,他引:1  
  相似文献   

9.
Glycosylphosphatidylinositols (GPIs) are the most abundant molecules present in the membranes of the parasitic protozoa Leishmania responsible for multiple forms of leishmaniasis. Among the prominent biological activities displayed by the major Leishmania GPIs [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] is the inhibition of macrophage functions such as the protein kinase C (PKC)-dependent signaling pathway. The bioactivity of Leishmania GPIs is in contrast to Trypanosoma brucei and Plasmodium falciparum GPIs, which activate the macrophage functions. To address the question as to which structural domain of Leishmania GPIs is responsible for dramatic down-regulation of PKC-dependent transient c-fos expression, the chemically synthesized defined alkylacylglycerolipids domain of corresponding GPIs, and LPG and GIPLs isolated from Leishmania donovani, were evaluated for inhibition of PKC and c-fos expression in macrophages. The results presented here demonstrate that the unusual lipid domain of Leishmania GPIs is primarily responsible for inhibition of PKC-dependent transient c-fos expression.  相似文献   

10.
Kelly BL  Singh G  Aiyar A 《PloS one》2011,6(6):e21412
AT-rich DNA, and the proteins that bind it (AT-hook proteins), modulate chromosome structure and function in most eukaryotes. Unlike other trypanosomatids, the genome of Leishmania species is unusually GC-rich, and the regulation of Leishmania chromosome structure, replication, partitioning is not fully understood. Because AT-hook proteins modulate these functions in other eukaryotes, we examined whether AT-hook proteins are encoded in the Leishmania genome, to test their potential functions. Several Leishmania ORFs predicted to be AT-hook proteins were identified using in silico approaches based on sequences shared between eukaryotic AT-hook proteins. We have used biochemical, molecular and cellular techniques to characterize the L. amazonensis ortholog of the L. major protein LmjF06.0720, a potential AT-hook protein that is highly conserved in Leishmania species. Using a novel fusion between the AT-hook domain encoded by LmjF06.0720 and a herpesviral protein, we have demonstrated that LmjF06.0720 functions as an AT-hook protein in mammalian cells. Further, as observed for mammalian and viral AT-hook proteins, the AT-hook domains of LmjF06.0720 bind specific regions of condensed mammalian metaphase chromosomes, and support the licensed replication of DNA in mammalian cells. LmjF06.0720 is nuclear in Leishmania, and this localization is disrupted upon exposure to drugs that displace AT-hook proteins from AT-rich DNA. Coincidentally, these drugs dramatically alter the cellular physiology of Leishmania promastigotes. Finally, we have devised a novel peptido-mimetic agent derived from the sequence of LmjF06.0720 that blocks the proliferation of Leishmania promastigotes, and lowers amastigote parasitic burden in infected macrophages. Our results indicate that AT-hook proteins are critical for the normal biology of Leishmania. In addition, we have described a simple technique to examine the function of Leishmania chromatin-binding proteins in a eukaryotic context amenable to studying chromosome structure and function. Lastly, we demonstrate the therapeutic potential of compounds directed against AT-hook proteins in Leishmania.  相似文献   

11.
Lipophosphoglycan is a prominent member of the phosphoglycan-containing surface glycoconjugates of Leishmania. Genetic tests enable confirmation of its role in parasite virulence and permit discrimination between the roles of lipophosphoglycan and related glycoconjugates. When two different lipophosphoglycan biosynthetic genes from Leishmania major were knocked out, there was a clear loss of virulence in several steps of the infectious cycle but, with Leishmania mexicana, no effect on virulence was found. This points to an unexpected diversity in the reliance of Leishmania species on virulence factors, a finding underscored by recent studies showing great diversity in the host response to Leishmania species.  相似文献   

12.
Monoclonal antibodies that specifically recognise Leishmania (Viannia) braziliensis promastigotes were produced and termed SST-2, SST-3 and SST-4. SST-2 recognises a conformational epitope present in a 24-28 kDa doublet and in a 72 kDa component, as verified by Western blotting. Indirect immunofluorescence showed that the antigen recognised by SST-2 is distributed homogeneously on the parasite surface. SST-3 recognises a flagellar glycoprotein of approximately 180 kDa. The reactivity of this mAb was abolished by sodium m-periodate treatment, indicating that SST-3 reacts with a carbohydrate epitope of the 180 kDa antigen. SST-4 recognises a conformational epitope of a 98 kDa antigen. SST-2, SST-3 and SST-4 were specific to L. (V.) braziliensis promastigote forms. Indirect immunofluorescence did not show reactivity of SST-2 or SST-3 with amastigotes of L. (V.) braziliensis, or with promastigotes of Leishmania (Viannia) panamensis, Leishmania (Viannia) guyanensis, Leishmania (Viannia) naiffi, Leishmania (Viannia) lainsoni, Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) major, or Leishmania (Leishmania) chagasi. We also evaluated the involvement of SST-2, SST-3 and SST-4 antigens in parasite-macrophage interaction. Fab fragments of SST-3 and SST-4 significantly inhibited the infectivity of L. (V.) braziliensis promastigotes to mouse peritoneal macrophages.  相似文献   

13.
Recently two hypotheses have been proposed for the evolution of Leishmania involving respectively a Neotropical or Paleartic origin for the species. Here an alternative proposal on the phylogeny of Leishmania based on the major divisions within the genus is presented. In this hypothesis a Neotropic origin is retained for L. (Viannia) and Paraleishmania, a recently described section within the genus Leishmania, while an African origin is proposed for L. (Leishmania) and possibly Sauroleishmania. The current distribution of Leishmania in the Neotropics is explained as the product of multiple introductions of Leishmania parasites into the New World. Problems with organismal identity in Sauroleishmania and the use of molecular sequence data in inferring phylogenies are also discussed.  相似文献   

14.
The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genus Leishmania. The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates of Leishmania donovani promastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification of Leishmania elongation factor-1alpha (EF-1alpha) as a SHP-1-binding protein. Purified Leishmania EF-1alpha, but not host cell EF-1alpha, bound directly to SHP-1 in vitro leading to its activation. Three independent lines of evidence indicated that Leishmania EF-1alpha may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [(35)S]methionine-labeled organisms contained Leishmania EF-1alpha. Second, confocal, fluorescence microscopy using Leishmania-specific antisera detected Leishmania EF-1alpha in the cytosol of infected cells. Third, co-immunoprecipitation showed that Leishmania EF-1alpha was associated with SHP-1 in vivo in infected cells. Finally, introduction of purified Leishmania EF-1alpha, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-gamma. Thus, Leishmania EF-1alpha is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.  相似文献   

15.
Using fluorescence in situ hybridization, we determined the ploidy of four species of Leishmania: Leishmania infantum, Leishmania donovani, Leishmania tropica and Leishmania amazonensis. We found that each cell in a strain possesses a combination of mono-, di- and trisomies for all chromosomes; ploidy patterns were different among all strains/species. These results extend those we previously described in Leishmania major, demonstrating that mosaic aneuploidy is a genetic feature widespread to the Leishmania genus. In addition to the genetic consequences induced by this mosaicism, the apparent absence of alternation between haploid/diploid stages questions the modality of genetic exchange in Leishmania sp.  相似文献   

16.
Recent progress in sequencing the genomes of several Leishmania species, causative agents of cutaneous, mucocutaneous and visceral leishmaniasis, is revealing unusual features of potential relevance to parasite virulence and pathogenesis in the host. While the genomes of Leishmania major, Leishmania braziliensis and Leishmania infantum are highly similar in content and organisation, species-specific genes and mechanisms distinguish one from another. In particular, the presence of retrotransposons and the components of a putative RNA interference machinery in L. braziliensis suggest the potential for both greater diversity and more tractable experimentation in this Leishmania Viannia species.  相似文献   

17.
Hb endocytosis in Leishmania is mediated through a 46-kDa protein located in the flagellar pocket. To understand the nature of the Hb receptor (HbR), we have purified the 46-kDa protein to homogeneity from Leishmania promastigote membrane. Purified HbR specifically binds Hb. The gene for HbR was cloned, and sequence analysis of the full-length HbR gene indicates the presence of hexokinase (HK) signature sequences, ATP-binding domain, and PTS-II motif. Four lines of evidence indicate that HbR in Leishmania is a hexokinase: 1) the recombinant HbR binds Hb, and the Hb-binding domain resides in the N terminus of the protein; 2) recombinant proteins and cell lysate prepared from HbR-overexpressing Leishmania promastigotes show enhanced HK activity in comparison with untransfected cells; 3) immunolocalization studies using antibodies against the N-terminal fragment (Ld-HbR-DeltaC) of Ld-HbR indicate that this protein is located in the flagellar pocket of Leishmania; and 4) binding and uptake of (125)I-Hb by Leishmania is significantly inhibited by anti-Ld-HbR-DeltaC antibody and Ld-HbR-DeltaC, respectively. Taken together, these results indicate that HK present in the flagellar pocket of Leishmania is involved in Hb endocytosis.  相似文献   

18.
19.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

20.
In a previous report, we have presented several lines of evidence, derived from widely different methodologies, suggesting that Leishmania has specific receptors for transferrin with a Kd similar to the mammalian transferrin receptor. This paper describes the identification, purification, and biochemical characterization of Leishmania transferrin receptor. The Leishmania transferrin receptor, detected on intact parasites by immunoperoxidase staining, was first identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blot analysis, using 125I-transferrin, as a 70-kDa protein. It has been isolated initially from Leishmania infantum promastigotes using affinity chromatography on a transferrin-Sepharose column and, subsequently, from Leishmania major promastigotes. The use of polyclonal antisera to the purified 70-kDa Leishmania transferrin receptor and to the purified rat transferrin receptor showed that the two receptors are antigenically distinct. The 70-kDa Leishmania transferrin receptor was subsequently characterized as an integral membrane glycoprotein. The monomeric state of the Leishmania transferrin receptor was demonstrated by gel filtration of purified receptor complexed with 125I-transferrin. Thus, the Leishmania transferrin receptor, unlike the mammalian receptor, is not a disulfide-linked dimer but a single 70-kDa polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号