首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
More than 35 site-directed mutants of the plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae have been constructed and expressed to investigate the function of N- and C-termini and of conserved amino acids. Conserved motif TGES seems to form part of both the catalytic machinery for the hydrolysis of the phosphorylated intermediate and the vanadate binding site. In addition, it is involved in the coupling of ATP hydrolysis to H+ transport. The phosphorylated intermediate is also essential for this coupling, but not for ATP hydrolysis. The aspartate residues of conserved motifs DPPR, TGD and TGDGVND (the last one) seem to form part of the ATP binding site. The positive charge of the conserved motif KGAP is important for the kinase or phosphorylating activity. A conserved proline and a conserved aspartate predicted to have a transmembrane location are essential for activity. The N-terminus contains a conserved acidic region which may be involved in assembly into the plasma membrane. All the hydrophobic stretches at the C-terminus are also required for assembly. The last 11 amino acids constitute a non-essential inhibitory domain involved in regulation of the enzyme by glucose metabolism.  相似文献   

3.
M Vai  L Popolo  L Alberghina 《FEBS letters》1986,206(1):135-141
The plasma membrane H+-ATPases from fungi and yeasts have similar catalytic and molecular properties. A structural comparison has been performed using immunoblot analysis with polyclonal antibodies directed toward the 102 kDa polypeptide of the plasma membrane H+-ATPase from Neurospora crassa. A strong cross-reactivity is observed between the fungal H+-ATPase and the enzyme from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Structural homologies are indicated also by the analysis of the cross-reactive peptides originated by proteolytic digestion of Neurospora and S. cerevisiae purified enzymes. Neither enzyme from these two sources appears to be glycosylated by a highly sensitive concanavalin A affinity assay on blotted proteins. A glycoprotein of Mr 115000 and pI 4.8-5, which comigrates with a cell cycle-modulated protein on 2D gel, is present in partially purified preparations of plasma membrane H+-ATPase of S. cerevisiae and it is shown to be structurally unrelated to H+-ATPase.  相似文献   

4.
F Portillo  P Eraso  R Serrano 《FEBS letters》1991,287(1-2):71-74
The yeast plasma membrane H+-ATPase is activated in vivo by glucose metabolism, and previous deletion analysis has shown the C-terminus of the enzyme to be involved in this regulation. Site-directed mutagenesis demonstrates that Arg909 and Thr912 at the C-terminus are important for the increase in Vmax of the ATPase induced by glucose. Other changes in kinetic parameters induced by glucose are largely independent of these amino acids. Arg909 and Thr912 form a potential phosphorylation site for calmodulin-dependent multiprotein kinase. A double mutation of Ser911 and Thr912 to Ala results in no cell growth in glucose medium and greatly reduced activation of the ATPase by glucose. Growth and activity are restored by a third mutation (Ala547----Val) at the catalytic domain, providing genetic evidence for domain interaction.  相似文献   

5.
The plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae is a prototype for the mutagenic analysis of structure-function relationships in P-type cation pumps. Because a functional H+ pump is required for viability, wild-type ATPase must be maintained in the plasma membrane for normal cell growth. Our expression strategy involves a rapid switch in expression from the wild-type ATPase gene to a mutant allele followed by entrapment of the newly synthesized mutant enzyme in an internal, secretory vesicle pool. The isolated vesicles prove to be ideally suited for the study of the catalytic and transport properties of the ATPase. Work to date has focused on conserved residues in the vicinity of the aspartyl-phosphate reaction intermediate. Substitution of Asp378 with Glu, Ser, or Asn and of Lys379 with Gln prevents normal biogenesis of the mutant ATPase. The more conservative Lys379----Arg mutation was tolerated, but with a sixfold loss of activity and substantial alterations in Km for ATP and Ki for vanadate. Nonconservative replacement of Thr380, Thr382, or Thr384 with Ala led to inactive enzyme, whereas the conservative change to Ser caused a two to threefold reduction in ATP hydrolysis and H(+)-pumping. Taken together, the results are consistent with an essential role for these invariant residues in phosphate-binding and ATP hydrolysis.  相似文献   

6.
Recombinant plant plasma membrane H(+)-ATPase has been produced in a yeast expression system comprising a multicopy plasmid and the strong promoter of the yeast PMA1 gene. Western blotting with a specific monoclonal antibody showed that the plant ATPase is one of the major membrane proteins made by the transformed cells, accounting for about 1% of total yeast protein. The plant ATPase synthesized in yeast is fully active. It hydrolyzes ATP, pumps protons, and the reaction cycle involves a phosphorylated intermediate. Phosphorylation is possible from both ATP and Pi. Unlike the situation in plants, however, most of the plant ATPase is not expressed in the yeast plasma membrane. Rather, the enzyme appears to remain trapped at a very early stage of secretory pathway: insertion into the endoplasmic reticulum. This organelle was observed to proliferate in the form of stacked membranes surrounding the yeast nucleus in order to accommodate the large amount of plant ATPase produced. In this location, the plant ATPase can be purified with high yield (70 mg from 1 kg of yeast) from membranes devoid of endogenous yeast plasma membrane H(+)-ATPase. This convenient expression system could be useful for other eukaryotic membrane proteins and ATPases.  相似文献   

7.
The crystal structures of the Ca(2+)- and H(+)-ATPases shed light into the membrane embedded domains involved in binding and ion translocation. Consistent with site-directed mutagenesis, these structures provided additional evidence that membrane-spanning segments M4, M5, M6 and M8 are the core through which cations are pumped. In the present study, we have used alanine/serine scanning mutagenesis to study the structure-function relationships within M6 (Leu-721-Pro-742) of the yeast plasma membrane ATPase. Of the 22 mutants expressed and analyzed in secretory vesicles, alanine substitutions at two well conserved residues (Asp-730 and Asp-739) led to a complete block in biogenesis; in the mammalian P-ATPases, residues corresponding to Asp-730 are part of the cation-binding domain. Two other mutants (V723A and I736A) displayed a dramatic 20-fold increase in the IC(50) for inorganic orthovanadate compared to the wild-type control, accompanied by a significant reduction in the K(m) for Mg-ATP, and an alkaline shift in the pH optimum for ATP hydrolysis. This behavior is apparently due to a shift in equilibrium from the E(2) conformation of the ATPase towards the E(1) conformation. By contrast, the most striking mutants lying toward the extracellular side in a helical structure (L721A, I722A, F724A, I725A, I727A and F728A) were expressed in secretory vesicles but had a severe reduction of ATPase activity. Moreover, all of these mutants but one (F728A) were unable to support yeast growth when the wild-type chromosomal PMA1 gene was replaced by the mutant allele. Surprisingly, in contrast to M8 where mutations S800A and E803Q (Guerra et al., Biochim. Biophys. Acta 1768: 2383-2392, 2007) led to a dramatic increase in the apparent stoichiometry of H(+) transport, three substitutions (A726S, A732S and T733A) in M6 showed a reduction in the apparent coupling ratio. Taken together, these results suggest that M6 residues play an important role in protein stability and function, and probably are responsible for cation binding and stoichiometry of ion transport as suggested by homology modeling.  相似文献   

8.
The plasma membrane of Schizosaccharomyces pombe contains an H(+)-ATPase similar to the cation transport ATPases of other eukaryotic organisms. The fluorescence excitation and emission spectra of the purified H(+)-ATPase are characteristic of tryptophan residues. pH reduction from 7.5 to 5.7 produces a 4% decrease in fluorescence intensity, while a further reduction to pH 5.0 leads to an increase of fluorescence. A close correlation is observed between the pH dependence of the intrinsic fluorescence and the pH dependence of (i) ATPase activity, (ii) the fluorescence of Tb-formycin triphosphate bound to the active site, and (iii) inhibition by vanadate of ATPase activity. It is proposed that the effect of pH on intrinsic fluorescence reveals the existence of an H+ induced conformational change of the H(+)-ATPase similar to the E1----E2 transition of the other plasma membrane cation transport ATPases.  相似文献   

9.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

10.
PMA1 expression, plasma membrane H(+)-ATPase enzyme kinetics, and the distribution of the ATPase have been studied in carbon-starved Candida albicans induced with glucose for yeast growth at pH 4.5 and for germ tube formation at pH 6.7. PMA1 expression parallels expression of the constitutive ADE2 gene, increasing up to sixfold during yeast growth and twofold during germ tube formation. Starved cells contain about half the concentration of plasma membrane ATPase of growing cells. The amount of plasma membrane ATPase is normalized prior to either budding or germ tube emergence by the insertion of additional ATPase molecules, while ATPase antigen appears uniformly distributed over the entire plasma membrane surface during both growth phases. Glucose addition rapidly activates the ATPase twofold regardless of the pH of induction. The turnover of substrate molecules per second by the enzyme in membranes from budding cells quickly declines, but the enzyme from germ tube-forming cells maintains its turnover of substrate molecules per second and a higher affinity for Mg-ATP. The plasma membrane ATPase of C. albicans is therefore regulated at several levels; by glucose metabolism/starvation-related factors acting on gene expression, by signals generated through glucose metabolism/starvation which are thought to covalently modify the carboxyl-terminal domain of the enzyme, and possibly by additional signals which may be specific to germ tube formation. The extended period of intracellular alkalinization associated with germ tube formation may result from regulation of proton-pumping ATPase activity coupled with higher ratios of cell surface to effective cytosolic volume.  相似文献   

11.
12.
Glucose is well known to cause a rapid, reversible activation of the yeast plasma membrane H(+)-ATPase, very likely mediated by phosphorylation of two or more Ser/Thr residues near the C terminus. Recent mutagenesis studies have shown that glucose-dependent activation can be mimicked constitutively by amino acid substitutions in stalk segment 5 (S5), an alpha-helical stretch connecting the catalytic part of the ATPase with transmembrane segment 5 (Miranda, M., Allen, K. E., Pardo, J. P., and Slayman, C. W. (2001) J. Biol. Chem. 276, 22485-22490). In the present work, the fluorescent maleimide Alexa-488 has served as a probe for glucose-dependent changes in the conformation of S5. Experiments were carried out in a "3C" version of the ATPase, from which six of nine native cysteines had been removed by site-directed mutagenesis to eliminate background labeling by Alexa-488. In this construct, three of twelve cysteines introduced at various positions along S5 (A668C, S672C, and D676C) reacted with the Alexa dye in a glucose-independent manner, as shown by fluorescent labeling of the 100 kDa Pma1 polypeptide and by isolation and identification of the corresponding tryptic peptides. Especially significant was the fact that three additional cysteines reacted with Alexa-488 more rapidly (Y689C) or only (V665C and L678C) in plasma membranes from glucose-metabolizing cells. The results support a model in which the S5 alpha-helix undergoes a significant change in conformation to expose positions 665, 678, and 689 during glucose-dependent activation of the ATPase.  相似文献   

13.
Proteolytic (trypsin) treatment removes a small terminal segment from the 100-kDa plant plasma membrane H(+)-ATPase. This results in activation of H+ pumping across the plasma membrane, suggesting that an inhibitory domain is located in one of the terminal regions of the enzyme (Palmgren, M.G., Larsson, C., and Sommarin, M. (1990) J. Biol. Chem. 265, 13423-13426). In order to identify the origin of the fragment released by trypsin, polyclonal antibodies were raised against the first 55 amino acids (N-terminal region), the last 99 amino acids (C-terminal region), and a portion of 150 amino acids in the central part of the enzyme as deduced from one of the H(+)-ATPase genes (PMA2) of Arabidopsis thaliana. The native, 100-kDa H(+)-ATPase was recognized by all three antisera in Western blots. By contrast, the approximately 90-kDa polypeptide appearing after trypsin treatment was only recognized by the antisera against the N-terminal and central region, but not by the antiserum against the C-terminal region, suggesting that the inhibitory domain is located in this part of the enzyme. To more closely determine the position of the inhibitory domain, three peptides representing conserved parts of the C-terminal region were synthesized (residues 861-888, 912-943, and 936-949 of the Arabidopsis (PMA2) sequence). Only one of the peptides (residues 861-888) affected H+ pumping by the trypsin-activated (approximately 90-kDa) enzyme. This peptide of 28 amino acids inhibited H+ pumping with an IC50 of about 15 microM, suggesting that the auto-inhibitory domain is located within the corresponding part of the C-terminal region.  相似文献   

14.
15.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

16.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.  相似文献   

17.
We have cloned and sequenced a cDNA for the rabbit gastric proton-potassium pump (H+/K(+)-ATPase) alpha-subunit. The deduced peptide contains 1035 amino acids (Mr 114,201) and shows 97% sequence identity with the respective rat and hog proteins. A monoclonal antibody 146-14 has been shown previously to react with the extracytoplasmic side of the catalytic H+/K(+)-ATPase subunit and here we show that the epitope is in the region between amino acids 855 and 902 (the numbering of the H+/K(+)-ATPase catalytic subunit throughout the paper refers to the rabbit sequence). The localization of this epitope in conjunction with previously observed trypsin cleavage sites in the C-terminal one third of the enzyme and the hydrophobicity plot of the deduced peptide sequence are evidence for a structural model for the alpha-subunit of the H+/K(+)-ATPase which contains at least ten membrane spanning segments, similar to that deduced for the Ca(2+)-ATPase of sarcoplasmic reticulum.  相似文献   

18.
The highly conserved motif +(534)DPPR of Saccharomyces cerevisiae H(+)-ATPase, located in the putative ATP binding site, has been mutagenized and the resulting 23 mutant genes conditionally expressed in secretory vesicles. Fourteen mutant ATPases (D534A, D534V, D534L, D534N, D534G, D534T, P535A, P535V, P535L, P535G, P535T, P535E, P535K and R537T) failed to reach the secretory vesicles. Of these mutants, nine (D534N, D534T, P535A, P535V, P535L, P535G, P535T, P535E and P535K) were not detected in total cellular membranes, and five (D534A, D534V, D534G, D534L and R537T) were retained at the endoplasmic reticulum and exhibited a dominant lethal phenotype. The remaining mutants (D534E, R537A, R537V, R537L, R537N, R537G, R537E, R537K and R537H) reached the secretory vesicles at levels similar to that of the wild type. Of these, six (R537A, R537V, R537L, R537N, R537G, and R537E) showed severely decreased ATPase activity compared to the wild type enzyme, and three (D534E, R537K and R537H) rendered an enzyme with an altered K(m) for ATP.  相似文献   

19.
20.
The plasma membrane H(+)-ATPase from Saccharomyces cerevisiae is an enzyme that plays a very important role in the yeast physiology. The addition of protonophores, such as 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), also triggers a clear in vivo activation of this enzyme. Here, we demonstrate that CCCP-induced activation of the plasma membrane H(+)-ATPase shares some similarities with the sugar-induced activation of the enzyme. Phospholipase C and protein kinase C activities are essential for this activation process while Gpa2p, a G protein involved in the glucose-induced activation of the ATPase, is not required. CCCP also induces a phospholipase C-dependent increase in intracellular calcium. Moreover, we show that the availability of extracellular calcium is required for CCCP stimulation of H(+)-ATPase, suggesting a possible connection between calcium signaling and activation of ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号