首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non‐genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non‐DNA sequence‐based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment‐induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non‐coding RNAs, are also summarized. We particularly focus on evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects. The thought‐provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome‐wide level and single‐cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment‐induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non‐mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene–environment interactions shape developmental processes and physiological functions, which in turn may have wide‐ranging implications for human health, and understanding biological adaptation and evolution.  相似文献   

2.
Although Mendel’s first laws explain the transmission of most characteristics, there has recently been a renewed interest in the notion that DNA is not the sole determinant of our inherited phenotype. Human epidemiology studies and animal and plant genetic studies have provided evidence that epigenetic information (“epigenetic” describes an inherited effect on chromosome or gene function that is not accompanied by any alteration of the nucleotide sequence) can be inherited from parents to offspring. Most of the mechanisms involved in epigenetic “memory” are paramutation events, which are heritable epigenetic changes in the phenotype of a “paramutable” allele. Initially demonstrated in plants, paramutation is defined as an interaction between two alleles of a single locus that results in heritable changes of one allele that is induced by the other. The authors describe an unexpected example of paramutation in the mouse revealed by a recent analysis of an epigenetic variation modulating expression of theKit locus. The progeny of hétérozygote intercrosses (carrying one mutant and one wild-type allele) showed persistence of the white patches (characteristic of hétérozygotes) in the homozygous Kit+/+ progeny. The DNA sequences of the two wild-type alleles were structurally normal, revealing an epigenetic modification. Further investigations showed that RNA and microRNA, released by sperm, mediate this epigenetic inheritance. The molecular mechanisms involved in this unexpected mode of inheritance and the role of RNA molecules in the spermatozoon head as possible vectors for the hereditary transfer of such modifications — implying that paternal inheritance is not limited to just one haploid copy of the genome — are still a matter of debate. Paramutations may be considered to be one possibility of epigenetic modification in the case of familial disease predispositions not fully explained by Mendelian analysis.  相似文献   

3.
The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded in DNA is utilized. The bulk of current research in epigenetics concerns itself with mitotically inherited epigenetic processes underlying development or responses to environmental cues (as well as the role of mis-regulation or dys-regulation of such processes in disease and ageing), i.e., epigenetic changes occurring within individuals. However, a steadily growing body of evidence indicates that epigenetic changes may also sometimes be transmitted from parents to progeny, meiotically in sexually reproducing organisms or mitotically in asexually reproducing ones. Such transgenerational epigenetic inheritance (TEI) raises obvious questions about a possible evolutionary role for epigenetic ‘Lamarckian’ mechanisms in evolution, particularly when epigenetic modifications are induced by environmental cues. In this review I attempt a brief overview of the periodically reviewed and debated ‘classical’ TEI phenomena and their possible implications for evolution. The review then focusses on a less-discussed, unique kind of protein-only epigenetic inheritance mediated by prions. Much remains to be learnt about the mechanisms, persistence and effects of TEI. The jury is still out on their evolutionary significance and how these phenomena should be incorporated into evolutionary theory, but the growing weight of evidence indicates that likely evolutionary roles for these processes need to be seriously explored.  相似文献   

4.
In the age of next-generation sequencing (NGS) and with the availability of whole sequenced genomes and epigenomes, some attention has shifted from purely sequence-based studies to those of heritable epigenetic modifications. Transgenerational inheritance can be defined as heritable changes to the state of DNA that may be passed on to subsequent generations without alterations to the underlying DNA sequence. Although this phenomenon has been extensively studied in many systems, studies of transgenerational inheritance in mammals and other higher-level eukaryotes may be complicated by the fact that many epigenetic marks are reprogrammed during sexual reproduction. This, by definition, may obscure our interpretation of what is in fact truly transgenerational. Therefore, in this mini review, we discuss what is currently known in the field about transgenerational epigenetic inheritance in ciliates and plants, with a particular emphasis on RNA-mediated processes and changes in chromatin states.  相似文献   

5.
Developmental plasticity, the capacity of a single genotype to give rise to different phenotypes, affects evolutionary dynamics by influencing the rate and direction of phenotypic change. It is based on regulatory changes in gene expression and gene products, which are partially controlled by epigenetic mechanisms. Plasticity involves not just epigenetic changes in somatic cells and tissues; it can also involve changes in germline cells. Germline epigenetic plasticity increases evolvability, the capacity to generate heritable, selectable, phenotypic variations, including variations that lead to novel functions. I discuss studies that show that some complex adaptive responses to new challenges are mediated by germline epigenetic processes, which can be transmitted over variable number of generations, and argue that the heritable variations that are generated epigenetically have an impact on both small-scale and large-scale aspects of evolution. First, I review some recent ecological studies and models that show that germline (gametic) epigenetic inheritance can lead to cumulative micro-evolutionary changes that are rapid and semi-directional. I suggest that “priming” and “epigenetic learning” may be of special importance in generating heritable, fine-tuned adaptive responses in populations. Second, I consider work showing how genomic and environmental stresses can also lead to epigenome repatterning, and produce changes that are saltational.  相似文献   

6.
7.
Many essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ~10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.  相似文献   

8.
Epigenetics and plant evolution   总被引:16,自引:0,他引:16  
A fundamental precept of evolutionary biology is that natural selection acts on phenotypes determined by DNA sequence variation within natural populations. Recent advances in our understanding of gene regulation, however, have elucidated a spectrum of epigenetic molecular phenomena capable of altering the temporal, spatial, and abundance patterns of gene expression. These modifications may have morphological, physiological, and ecological consequences, and are heritable across generations, suggesting they are important in evolution. A corollary is that genetic variation per se is not always a prerequisite to evolutionary change. Here, we provide an introduction to epigenetic mechanisms in plants, and highlight some of the empirical studies illustrative of the possible connections between evolution and epigenetically mediated alterations in gene expression and morphology.  相似文献   

9.
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.  相似文献   

10.
In this article, we review environmentally mediated epigenetic regulation in plants using two case histories. One of these, vernalization, mediates adaptation of plants to different environments and it exemplifies processes that are reset in each generation. The other, virus-induced silencing, involves transgenerationally inherited epigenetic modifications. Heritable epigenetic marks may result in heritable phenotypic variation, influencing fitness, and so be subject to natural selection. However, unlike genetic inheritance, the epigenetic modifications show instability and are influenced by the environment. These two case histories are then compared with other phenomena in plant biology that are likely to represent epigenetic regulation in response to the environment.  相似文献   

11.
Epigenetic inheritance systems enable the environmentally induced phenotypes to be transmitted between generations. Jablonka and Lamb (1991, 1995) proposed that these systems have a substantial role during speciation. They argued that divergence of isolated populations may be first triggered by the accumulation of (heritable) phenotypic differences that are later followed and strengthened by genetic changes. The plausibility of this idea is examined in this paper. At first, we discuss the "exploratory" behaviour of an epigenetic inheritance system on a one peak adaptive landscape. If a quantitative trait is far from the optimum, then it is advantageous to induce heritable phenotypic variation. Conversely, if the genotypes get closer to the peak, it is more favorable to canalize the phenotypic expression of the character. This process would lead to genetic assimilation. Next we show that the divergence of heritable epigenetic marks acts to reduce or to eliminate the genetic barrier between two adaptive peaks. Therefore, an epigenetic inheritance system can increase the probability of transition from one adaptive state to another. Peak shift might be initiated by (i) slight changes in the inducing environment or by (ii) genetic drift of the genes controlling epigenetic variability. Remarkably, drift-induced transition is facilitated even if phenotypic variation is not heritable. A corollary of our thesis is that evolution can proceed through suboptimal phenotypic states, without passing through a deep adaptive valley of the genotype. We also consider the consequences of this finding on the dynamics and mode of reproductive isolation.  相似文献   

12.
Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (~30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.  相似文献   

13.
DNA hypermethylation in tumorigenesis: epigenetics joins genetics   总被引:88,自引:0,他引:88  
  相似文献   

14.
There has been increasing interest in the possibility that behavioral experience—in particular, exposure to stress—can be passed on to subsequent generations through heritable epigenetic modifications. The possibility remains highly controversial, however, reflecting the lack of standardized definitions of epigenetics and the limited empirical support for potential mechanisms of transgenerational epigenetic inheritance. Nonetheless, growing evidence supports a role for epigenetic regulation as a key mechanism underlying lifelong regulation of gene expression that mediates stress vulnerability. This Perspective provides an overview of the multiple meanings of the term epigenetic, discusses the challenges of studying epigenetic contributions to stress susceptibility—and the experimental evidence for and against the existence of such mechanisms—and outlines steps required for future investigations.  相似文献   

15.
'Lamarckian' mechanisms in darwinian evolution   总被引:1,自引:0,他引:1  
Since the Modern Synthesis, evolutionary biologists have assumed that the genetic system is the sole provider of heritable variation, and that the generation of heritable variation is largely independent of environmental changes. However, adaptive mutation, epigenetic inheritance, behavioural inheritance through social learning, and language-based information transmission have properties that allow the inheritance of induced or learnt characters. The role of induced heritable variation in evolution therefore needs to be reconsidered, and the evolution of the systems that produce induced variation needs to be studied.  相似文献   

16.
17.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

18.
Environment-sensitive epigenetics and the heritability of complex diseases   总被引:1,自引:0,他引:1  
Furrow RE  Christiansen FB  Feldman MW 《Genetics》2011,189(4):1377-1387
Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the "missing heritability" problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability.  相似文献   

19.
20.
DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance.DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号