首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, activity concentrations of radiocesium in mushrooms from various locations in the Czech Republic and the Slovak Republic in the years 2000–2004 are presented. Summary reports of Czech regulatory bodies have judged the average activity concentrations in mushrooms to be remarkably below the maximum permissible level of contamination. However, there are certain regions where radiocesium activities have approached the maximum permissible level for contamination of basic foodstuff. For example, the highest activity concentration of 137Cs measured by gamma-spectrometry was 2,263 Bq kg−1 (on a dry mass basis), in Xerocomus badius from Staré Ransko (a locality in the Czech-Moravian Highlands, Czech Republic). The highest activity concentration of 137Cs measured in Slovakia was 966 Bq kg−1 (on a dry mass basis), for Suillus luteus from Senica. For comparison, the corresponding activity concentration in a sample taken within the 30 km zone around Chernobyl was measured to be 6,000 Bq kg−1 (on a dry mass basis). Our results have also demonstrated remarkably lower activity concentrations of 137Cs in Slovakia compared to those in the Czech Republic.  相似文献   

2.
The assessment doses due to ingestion of 137Cs and 90Sr for the population suffering from the Chernobyl accident was performed on the basis of the new mechanistic ecological model for assessment of radiological consequences of agricultural lands contamination (EMARC). The EMARC model allows estimation of internal doses based on ecological factors influencing the contamination of foodstuff, for the post-accidental years in the countries of the former Soviet Union. The EMARC model allows estimation of all quantities required in radiation hygiene practice. For example, the proposed analytical method may be used for both retrospective dose reconstruction and prospective estimates of annual dose and integrated “life-time” dose, for different age intervals. According to the EMARC model, estimated reference “life-time” doses for adults are between 7 and 269 μSv kBq−1 m2 for 137Cs, and between 25 and 235 μSv kBq−1 m2 for 90Sr. Maximal doses were estimated for persons who were 3, 9 and 11 years old, at the time of the accident and these doses exceed those for adults by a factors of 1, 5 for 90Sr, and 1.4 for 137Cs.  相似文献   

3.
A region between Chelyabinsk and Ekaterinburg in the Southern Urals has been heavily contaminated due to operational and accidental releases from the first Soviet plutonium production facility Mayak. In 1992 and 1993, the German Federal Office for Radiation Protection organized a measuring campaign involving two Russian institutes to assist with the validation of former Soviet measurement data. The results of this measuring campaign are reported here. Environmental samples were collected from areas affected by significant radioactive releases into the Techa river, which started in 1948, and by fallout from the explosion of a fission product storage tank in 1957. Soil, sediment, water, milk and food samples were independently analysed for 90Sr, 137Cs and plutonium by the three institutes involved. This paper presents data on the present levels of environmental radioactivity. The highest contamination of areas accessible to the local population was found in the vicinity of the Techa river around Muslumovo. Activity concentration of floodplain samples reached up to 37 000 Bq ⋅ kg–1 137Cs, 5 600 Bq ⋅ kg–1 90Sr and 9.9 Bq ⋅ kg–1 Pu. Milk and potatoes from private farms in Muslumovo showed low activity in the range from 0.7 Bq ⋅ kg–1 to 25 Bq ⋅ kg–1 90Sr. The results of the three independent measurement teams showed sufficient agreement. One Russian laboratory obtained plutonium activities that exceeded the results of the other laboratories by about 20%. Contrary to the International Chernobyl Project, there was no overestimation of 90Sr activities in the Russian analyses. Therefore, the validity of earlier data sets acquired with same methodology and quality control can be considered a valuable basis for further assessments and for dose reconstruction in epidemiological projects. Received: 18 July 1997 / Accepted in revised form: 19 December 1997  相似文献   

4.
The vertical 137Cs profile of forest and wasteland soils was analyzed in the south of the Podlasie Lowland area (Eastern Poland) about 20 years after the Chernobyl accident. In addition, the concentration of 40K in soils of the investigated area was measured. Below the litter layer (mean thickness 3 cm), the soil samples were collected up to a depth of 12 cm and then divided into three layers: 0–3, 3–7, 7–12 cm. The behavior of 137Cs and 40K isotopes in soils was analyzed depending on the depth from which the soil samples were collected, as well as on the content of organic carbon, pH of soil and its granulometric composition. It was established that the density of 137Cs in the litter layer equals 2.17 kBq m−2; it is the highest in layer 0–3 cm where it equals 3.44 kBq m−2, and it decreases with the depth to the value of 0.76 kBq m−2 in layer 7–12 cm. No similar pattern was observed in wasteland soils. The concentrations of 40K in forest and wasteland soils did not change significantly with depth.  相似文献   

5.
Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order 137Cs>90Sr>>241Am239+240Pu in the simulated lung fluid. The dissolution rate constant of e.g. 239+249Pu ranged from 0.72 to 5.4×10–6 g·cm–2 d–1 and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for 137Cs and 90Sr. On the other hand, for 239Pu and 241Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for 137Cs and 90Sr and type S material characteristics for 239Pu and 241Am.  相似文献   

6.
Meat of wild boar with an intial 137Cs activity concentration of 103 Bq kg−1 of fresh mass was treated by brining. Dry-salting reduced the 137Cs activity only by about 12–18%. Subsequent brining was done by using both pure sodium chloride and a mixture of sodium chloride and potassium nitrate. After double-brine exchange, the 137Cs activity concentration was reduced by at least 72%. The double-brine exchanges were done for two time intervals (the first each 24 h and the second each 7 days). There were no differences in the 137Cs activity reduction for these two time intervals. From the technological point of view, the repeated exchange of the brine solution represents a relative easy method of 137Cs activity reduction in contaminated pork meat.  相似文献   

7.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

8.
A radioecological survey in Antarctica shows that the239+240Pu,238Pu,241Am,90Sr, and137Cs activities were detectable in nearly all the samples. The activity level of239+240Pu,241Am, and137Cs in antarctic sediments was about 5–20 times lower than in the northern Adriatic Sea sediments, but the238Pu activities were relatively high. It was interesting to note that the90Sr concentrations in all the sediments tended to be low, which could be the result of the easier exchangeable behavior of90Sr in water. High concentrations were detected in mosses and lichens and their activity levels were comparable to those in central Italy. The radionuclide ratio analyses show that the major part of239+240Pu,241Am,90Sr, and137Cs was a result of nuclear weapon tests. The higher241Am/239+240Pu ratio was observed and it could perhaps be the result of fallout of nuclear weapon tests prior to 1962. The238Pu/239+240Pu ratio in the antarctic matrices was about seven times higher than in the Northern hemisphere and it could be inferred that the major part of238Pu was originating from the SNAP-9A satellite accident.  相似文献   

9.
To predict the external gamma-dose rate of Chernobyl-derived 137Cs for a period of about 100 years after its deposition, the vertical distribution of radiocesium in several meadow soils in the Chernobyl area and in Germany was determined, and the corresponding residence half-times of this radionuclide in the various soil layers were evaluated using a compartment model. The resulting residence half-times were subsequently used to calculate the vertical distribution of 137Cs in the soil as a function of time and finally to predict the external gamma-dose rates in air for these sites at various times. A regression analysis of the data obtained showed that the time dependence of the relative gamma-dose rate in air D(t) at the Chernobyl sites can be described by an exponential equation D(t) = a + b ⋅ exp(–t/c), where t is the time after deposition. For the ten German sites the best fit was obtained using the two-exponential equation D(t) = a ⋅ exp(–t/b) + c ⋅ exp(–t/d). The gamma-dose rate of 137Cs at the Chernobyl sites decreases significantly more slowly with time than at the German sites. This means that after e.g. 30 years the mean relative gamma-dose rate at the German sites will have decreased from 100% (corresponding to an infinite plane source on a smooth surface) to 9% (95% confidence interval 8%–10%), while at the sites in the Chernobyl area it will have decreased only to 21% (20%–23%). This difference is the result of the longer residence half-times of 137Cs in the soils at the Chernobyl sites. All results are compared with estimates from earlier studies. Received: 16 October 1996 / Accepted in revised form: 28 November 1996  相似文献   

10.
The bioavailability of 137Cs and 239+240Pu in soil, dust and aerosols has been determined by applying a fractional extraction procedure. In aerosols, 47–57% of 137Cs was found to be easily exchangeable. This differs significantly from soil and deposited dust samples collected on a nearby street as well as on grassland where 137Cs was quantitatively found in the acid-soluble fraction and the residue. A similar difference was observed for 239+240Pu: 47% of 239+240Pu in aerosols was associated with the organic fraction, while in soil and deposited dust from grassland 63–75% of 239+240Pu was found in the acid-soluble fraction. In deposited street dust, 53% of 239+240Pu was associated with the oxide fraction.  相似文献   

11.
This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m−2 d−2) and chlorophylla (4.1 μg 1−1) values were found to be comparable with measurements from other Arctic regions. Water column N-fixation rates were low (<0.02 μmol N m−1 d−1), but comparable with other estuarine systems. Despite a constant low temperature in the bottom waters (-1.0 to -1.8°C), a high sedimentary O2 uptake (740 μmol m−2 h−2) was observed and was primarily caused by the presence of benthic infauna. Bioturbation by benthic infauna was reflected in both homogeneous210Pb and137Cs profiles in the upper 4 cm of the sediment. Permanent accumulation within Young Sound was measured to 0.12 cm/year corresponding to 153 mmol C m−2 year−1 and 15 mmol N m−2 year−1. Rates of nitrification (22 μmol m−2 h−1) and denitrification (9 μmol m−2 h−1) were comparable with rates reported for other sediments with much higher environmental temperatures. Suphate reduction rates integrated over the upper 12 cm of the sediment were calculated to be 44 μmol m−2h−1.  相似文献   

12.
Radiocesium is normally bound only rather weakly and unspecifically by humic substances, in contrast to the actinides Pu and Am. Recently, however, it was observed that fallout 137Cs in the soil solution from an Of-horizon of a podzol forest soil (slightly decomposed plant material) was associated essentially only with one single size fraction of the humic substances. In deeper soil layers with well humified material (AOh-horizon), radiocesium was associated with all size fractions of the dissolved organic matter (DOM). To examine whether this unexpected behaviour is also observable for DOM isolated from other soils, we determined the association of fallout 137Cs,90Sr,238Pu, 239+240Pu and 241Am with various size fractions of DOM from in situ soil solutions isolated from two layers (0–2 cm and 2–5 cm) of two grassland soils (a soddy podzolic soil and a peat soil) within the 10 km zone of the nuclear reactor at Chernobyl (Ukraine). The four size fractions of DOM as obtained by gel filtration of the soil solution were (mean nominal molecular weight in daltons): fraction I: ≥2000, fraction II: 1300; fraction III: 560, fraction IV: inorganic compounds. The results for the well humified DOM (humus accumulation horizon of podzol, deeper layer of peat soil) showed that Pu and Am are essentially associated with the high molecular weight fractions, while Sr is present only in the `inorganic' fraction. Radiocesium is found in all the size fractions separated. A quite similar pattern was also found for Pu, Am, and Sr in the soil solution from only slightly decomposed plant material (0–2 cm of peat soil), but not for radiocesium. This radionuclide was again essentially only observable in one single low molecular weight fraction of DOM. The above results thus support our recent observations in the different horizons of a forest podzol mentioned above, even though no reason for the different binding of radiocesium by well humified soil organic matter and by only slightly decomposed plant material can be given at present. The data demonstrate, however, that information on only the total amount of a radionuclide in the soil solution will not be sufficient to interpret or predict its fate adequately in the soil. Received: 13 February 1998 / Accepted in revised form: 14 July 1998  相似文献   

13.

This study considers the exposure of the population of the most contaminated Gomel and Mogilev Oblasts in Belarus to prolonged sources of irradiation resulting from the Chernobyl accident. Dose reconstruction methods were developed and applied in this study to estimate the red bone-marrow doses (RBMs) from (i) external irradiation from gamma-emitting radionuclides deposited on the ground and (ii) 134Cs, 137Cs and 90Sr ingestion with locally produced foodstuffs. The mean population-weighted RBM doses accumulated during 35 years after the Chernobyl accident were 12 and 5.7 mGy for adult residents in Gomel and Mogilev Oblasts, respectively, while doses for youngest age groups were 20–40% lower. The highest mean area-specific RBM doses for adults accumulated in 1986–2021 were 63, 56 and 46 mGy in Narovlya, Vetka and Korma raions in Gomel Oblast, respectively. For most areas, external irradiation was the predominant pathway of exposure (60–70% from the total dose), except for areas with an extremely high aggregated 137Cs soil to cow’s milk transfer coefficient (≥?5.0 Bq L?1 per kBq m?2), where the contribution of 134Cs and 137Cs ingestion to the total RBM dose was more than 70%. The contribution of 90Sr intake to the total RBM dose did not exceed 4% for adults and 10% for newborns in most raion in Gomel and Mogilev Oblasts. The validity of the doses estimated in this study was assessed by comparison with doses obtained from measurements by thermoluminescence dosimeters and whole-body counters done in 1987–2015. The methodology developed in this study can be used to calculate doses to target organs other than RBM such as thyroid and breast doses. The age-dependent and population-weighted doses estimated in this study are useful for ecological epidemiological studies, for projection of radiation risk, and for justification of analytical epidemiological studies in populations exposed to Chernobyl fallout.

  相似文献   

14.
As a determinant of the associated health risks, the behavior of radionuclides in natural ecosystems needs to be better understood. Therefore, the activity concentration of various long-lived radionuclides released due to the Chernobyl accident, and the corresponding contributions to the whole-body dose rate, was studied as a function of time in mammalian indicator species inhabiting the natural forest ecosystems of Belarus, the bank vole (Clethrionomys glareolus) and the yellow-necked mouse (Apodemus flavicollus). The activity concentrations of 137Cs, 134Cs, 90Sr, 238Pu, 239,240Pu, 241Pu and 241Am in soil and in animals were measured at five monitoring sites with different ground deposition of radionuclides at different distances from the destroyed reactor. The observed temporal pattern of the radionuclide activity concentration in the studied animal populations reflects the changes in biological availability of these isotopes for biota, mostly due to fuel particle destruction and appearance of dissolved and exchangeable forms of radionuclides. The time course of 134+137Cs activity concentrations in animal populations appeared as a sequence of increase, peak and decrease. Maximal levels of radiocesium occurred 1–2 years after deposition, followed by an exponential decrease. Concentrations of incorporated 90Sr increased up to the tenth year after deposition. The activity concentrations of transuranic elements (238Pu, 239,240Pu, 241Pu and 241Am) were much lower than those of the other radionuclides, in the studied animals. A considerable activity of 241Am in animals from areas with high levels of contamination was firstly detected 5 years after deposition, it increased up to the tenth year and is expected to increase further in the future. Maximal values of the whole-body absorbed dose rates occurred during the year of deposition, followed by a decrease in the subsequent period. Generally, this decrease was monotonic, mainly determined by the decrease of the external γ-ray dose rate, but there were exceptions due to the delayed maximum of internal exposure. The inter-individual distributions of radionuclide concentrations and lifetime whole-body absorbed doses were asymmetric and close to log-normal, including concentrations and doses considerably higher than the population mean values.  相似文献   

15.
The western Bryansk region in south-western Russia was highly contaminated with 137Cs and 134Cs due to the Chernobyl accident in 1986. In 1990, a joint Nordic-Russian project was initiated in order to make measurements and estimates of the absorbed doses to selected groups of inhabitants in this area. The participating individuals were living in small villages with contamination levels between 0.9 and 2.7 MBq m–2. Only some villages had been decontaminated. Both schoolchildren and adults participated in the study and the number of persons was between 100 and 130 each year, residing in 5 villages. Every year in September–October, from 1990 to 1998, we performed individual measurements of external absorbed doses, assessed with thermoluminescent (TL) dosemeters (LiF). The mean effective dose per year from external irradiation due to the Chernobyl accident of the inhabitants in the villages ranged between 0.8 and 2.9 mSv during the study period and decreased with an apparent half-time of 3.7–8.2 years, depending on village and group. The highest individual doses within one village were, on average higher by a factor of 3 than the mean value for that village. Under the conservative assumption of a decrease rate in the external effective dose of 2% per year after 1998, individuals in the most highly exposed village are assumed to receive a life-time effective dose of about 75 mSv (between 1986 and 2056) from external exposure to caesium radionuclides. The mean value for the villages under study was estimated to be around 65 mSv using the assumed rate of decrease. Received: 20 December 2000 / Accepted: 1 October 2001  相似文献   

16.
Allochthonous inputs of detritus represent an important energy source for streams in forested regions, but dynamics of these materials are not well studied in neotropical headwater streams. As part of the tropical amphibian declines in streams (TADS) project, we quantified benthic organic matter standing stocks and organic seston dynamics in four Panamanian headwater streams, two with (pre-amphibian decline) and two without (post-decline) healthy amphibian assemblages. We also measured direct litterfall and lateral litter inputs in two of these streams. Continuous litterfall and monthly benthic samples were collected for 1 year, and seston was collected 1–3 times/month for 1 year at or near baseflow. Direct litterfall was similar between the two streams examined, ranging from 934–1,137 g DM m−2 y−1. Lateral inputs were lower, ranging from 140–187 g DM m−1 y−1. Dead leaves (57–60%), wood (24–29%), and green leaves (8–9%) contributed most to inputs, and total inputs were generally higher during the rainy season. Annual habitat-weighted benthic organic matter standing stocks ranged from 101–171 g AFDM m−2 across the four study reaches, with ∼4 × higher values in pools compared to erosional habitats. Total benthic organic matter (BOM) values did not change appreciably with season, but coarse particulate organic matter (CPOM, >1 mm) generally decreased and very fine particulate organic matter (VFPOM, 1.6–250 μm) generally increased during the dry season. Average annual seston concentrations ranged from 0.2–0.6 mg AFDM l−1 (fine seston, <754 μm >250 μm) and 2.0–4.7 mg AFDM l−1 (very fine, <250 μm >1.6 μm), with very fine particles composing 85–92% of total seston. Quality of fine seston particles in the two reaches where tadpoles were present was significantly higher (lower C/N) than the two where tadpoles had been severely reduced (P = 0.0028), suggesting that ongoing amphibian declines in this region are negatively influencing the quality of particles exported from headwaters. Compared to forested streams in other regions, these systems receive relatively high amounts of allochthonous litter inputs but have low in-stream storage. Handling editor: J. Padisak  相似文献   

17.
Some theoretical of the experimental investigation of solubility of radioactive aerosols were examined. Filters, which were exposed during October-November 1987 in Pripyat town, were studied. Measurements on 22 November 1987 showed that an activity in the air was 12.1-20.8 mBq/m3 for 137Cs, 34.9-89.3 mBq/m-3 for 144Ce, 24.3-30.5 mBq/m-3 for 106Ru. Disperse structure of aerosol hot particles and the number of hot particles on each filter fragment was estimated by radiography. To determine a dissolution rate constant a static system with two 0.14 micron pore size membrane MFE filters (Dubna, Russia) enclosing fragments of Petryanov filters was selected. The composition was held in Gamble's solution lung fluid anf then in 0.1 mol/l HCl as dastic juice simulation. The activity of 90Sr, 238Pu, 239 + 240Pu, 241Am and 244Cm in aerosol filters and solutions was measured by radiochemical methods. It was shown that leaching of radionuclides from aerosol hot particles in lung fluid simulation decreases in line 137Cs > 90Sr > 239 + 240Pu > or = 241Am, depending om particle diameter and time. Dissolution constants were presented. Dissolution of aerosol particles in 0.1 mol/l HCl is also shown (dissolution time was 3 days). A radionuclide transition to HCl solution decreases in line 90Am 241Am > 137Cs > 239 + 240Pu. A transition degree reached 21% for 90Sr and extraction of 241Am was 3-17%.  相似文献   

18.
A survey on radon (222Rn), thoron (220Rn) and its decay products (220RnD) was conducted in Chinese traditional residential dwellings constructed with loam bricks or soil wall. The activity concentrations in 164 dwellings under investigation were 72.4±59.2 (arithmetic mean, AM) and 57.5±2.0 Bq m−3 (geometric mean, GM) for 222Rn, and 318±368 and 162±3.7 Bq m−3 for 220Rn, respectively. For 220RnD, 67 dwellings were studied. The AM of the 220RnD equilibrium equivalent concentration was 3.8±3.3 Bq m−3 with a maximum value of 15.8 Bq m−3. On the basis of these results, the average annual effective doses to the local residents due to radon and thoron exposure were 1.44–4.62 mSv. Thoron contributes 12.9–56.6% to the total doses. Preliminary results show that there is a relation between 220RnD in air and 232Th in soil. The correlation factors of outdoor and indoor were 0.88 and 0.40. The 232Th activity content of Chinese soil is estimated to be about two times the world average. The traditional residential dwellings with soil construction are still common in China. Further investigations on the 220Rn level in these dwelling with the aim of dose reduction are proposed.  相似文献   

19.
The mysterious death of Mr. Alexander Litvinenko who was most possibly poisoned by Polonium-210 (210Po) in November 2006 in London attracted the attention of the public to the kinetics, dosimetry and the risk of this high radiotoxic isotope in the human body. In the present paper, the urinary excretion of seven persons who were possibly exposed to traces of 210Po was monitored. The values measured in the GSF Radioanalytical Laboratory are in the range of natural background concentration. To assess the effective dose received by those persons, the time-dependence of the organ equivalent dose and the effective dose after acute ingestion and inhalation of 210Po were calculated using the biokinetic model for polonium (Po) recommended by the International Commission on Radiological Protection (ICRP) and the one recently published by Leggett and Eckerman (L&E). The daily urinary excretion to effective dose conversion factors for ingestion and inhalation were evaluated based on the ICRP and L&E models for members of the public. The ingestion (inhalation) effective dose per unit intake integrated over one day is 1.7 × 10−8 (1.4 × 10−7) Sv Bq−1, 2.0 × 10−7 (9.6 × 10−7) Sv Bq−1 over 10 days, 5.2 × 10−7 (2.0 × 10−6) Sv Bq−1 over 30 days and 1.0 × 10−6 (3.0 × 10−6) Sv Bq−1 over 100 days. The daily urinary excretions after acute ingestion (inhalation) of 1 Bq of 210Po are 1.1 × 10−3 (1.0 × 10−4) on day 1, 2.0 × 10−3 (1.9 × 10−4) on day 10, 1.3 × 10−3 (1.7 × 10−4) on day 30 and 3.6 × 10−4 (8.3 × 10−5) Bq d−1 on day 100, respectively. The resulting committed effective doses range from 2.1 × 10−3 to 1.7 × 10−2 mSv by an assumption of ingestion and from 5.5 × 10−2 to 4.5 × 10−1 mSv by inhalation. For the case of Mr. Litvinenko, the mean organ absorbed dose as a function of time was calculated using both the above stated models. The red bone marrow, the kidneys and the liver were considered as the critical organs. Assuming a value of lethal absorbed dose of 5 Gy to the bone marrow, 6 Gy to the kidneys and 8 Gy to the liver, the amount of 210Po which Mr. Litvinenko might have ingested is therefore estimated to range from 27 to 1,408 MBq, i.e 0.2–8.5 μg, depending on the modality of intake and on different assumptions about blood absorption.  相似文献   

20.
The amount of Chernobyl-derived137Cs transferred to the soil by stemflow, throughfall (precipitation under the tree crown), and leaffall from three beeches was investigated as a function of time in the growing seasons of 1991 and 1992. Up to 70 Bq/week was deposited with the stemflow, mainly in dissolved form (<0.45 µm)=" rather=" than=" in=" particulate=" form=" (=">0.45 µm). The ratio of dissolved radiocesium to particulate radiocesium was about 10 in the stemflow. It varied considerably with time, but since these variations followed the same pattern for all three trees, they indicated a common cause to be responsible for the fractionation of radiocesium (e.g. meteorological conditions for bark weathering). A significant correlation was observed for the amount of dissolved137Cs (in Bq) and the amount of stemflow (in liters). The137Cs concentration in the stemflow (in Bq/1), however, decreased with increasing stemflow intensity (in Bq/week). For particulate radiocesium such correlations were not detected. Up to 5 Bq/m2 per week was deposited with the throughfall from the canopy, mainly in particulate form (ratio dissolved radiocesium to particulate radiocesium = 0.34). The mean total annual amounts of137Cs deposited to the ground (dissolved+particulate) for the three trees were: stemflow: 1991 600 Bq; 1992 460 Bq; throughfall: 1991 and 1992 100 Bq/m2 each; leaffall: 1992 10 Bq/m2. The data indicate that at present a substantial amount of the radiocesium in the leaves derives already from root uptake.Dedicated to Professor W. Jacobi on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号