首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
Telomerase is a ribonucleoprotein (RNP) particle required for the replication of telomeres. The RNA component, termed hTR, of human telomerase contains a domain structurally and functionally related to box H/ACA small nucleolar RNAs (snoRNAs). Furthermore, hTR is known to be associated with two core components of H/ACA snoRNPs, hGar1p and Dyskerin (the human counterpart of yeast Cbf5p). To assess the functional importance of the association of hTR with H/ACA snoRNP core proteins, we have attempted to express hTR in a genetically tractable system, Saccharomyces cerevisiae. Both mature non-polyadenylated and polyadenylated forms of hTR accumulate in yeast. The former is associated with all yeast H/ACA snoRNP core proteins, unlike TLC1 RNA, the endogenous RNA component of yeast telomerase. We show that the presence of the H/ACA snoRNP proteins Cbf5p, Nhp2p and Nop10p, but not Gar1p, is required for the accumulation of mature non-polyadenylated hTR in yeast, while accumulation of TLC1 RNA is not affected by the absence of any of these proteins. Our results demonstrate that yeast telomerase is unrelated to H/ACA snoRNPs. In addition, they show that the accumulation in yeast of the mature RNA component of human telomerase depends on its association with three of the four core H/ACA snoRNP proteins. It is likely that this is the case in human cells as well.  相似文献   

2.
3.
Small nucleolar ribonucleoprotein particles (snoRNPs) are essential cofactors in ribosomal RNA metabolism. Although snoRNP composition has been thoroughly characterized, the biogenesis process of these particles is poorly understood. We have identified two proteins from the yeast Saccharomyces cerevisiae, Yil104c/Shq1p and Ynl124w/Naf1p, which are essential and required for the stability of box H/ACA snoRNPs. Depletion of either Shq1p or Naf1p leads to a dramatic and specific decrease in box H/ACA snoRNA levels in vivo. A severe concomitant defect in ribosomal RNA processing is observed, consistent with the depletion of this family of snoRNAs. Shq1p and Naf1p show nuclear localization and interact with Nhp2p and Cbf5p, two core proteins of mature box H/ACA snoRNPs. Shq1p and Naf1p form a complex, but they are not strongly associated with box H/ACA snoRNPs. We propose that Shq1p and Naf1p are involved in the early biogenesis steps of box H/ACA snoRNP assembly.  相似文献   

4.
5.
Small nucleolar RNAs (snoRNAs) are an abundant class of non-protein-coding RNAs. In association with proteins they perform two most frequent nucleotide modifications in rRNAs and some other cellular RNAs: 2'-O-ribose methylation and pseudouridylation. SnoRNAs also participate in pre-rRNA cleavage and telomerase functions. Most snoRNAs fall into two families, box C/D and H/ACA, distinguished by the presence of conserved sequence boxes. Although C/D and H/ACA snoRNP proteins contain homologous regions, the assembly of these RNPs significantly differ. In addition, snoRNAs include the RNA component of RNAses P and MRP. The structure and function of small RNPs from Cajal bodies (small organelles associated with nucleoli) similar to snoRNP are also discussed.  相似文献   

6.
Naf1 p is a box H/ACA snoRNP assembly factor   总被引:6,自引:1,他引:5       下载免费PDF全文
  相似文献   

7.
Box H/ACA small nucleolar ribonucleoprotein particles (H/ACA snoRNPs) play key roles in the synthesis of eukaryotic ribosomes. The ways in which these particles are assembled and correctly localized in the dense fibrillar component of the nucleolus remain largely unknown. Recently, the essential Saccharomyces cerevisiae Naf1p protein (encoded by the YNL124W open reading frame) was found to interact in a two-hybrid assay with two core protein components of mature H/ACA snoRNPs, Cbf5p and Nhp2p (T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, Proc. Natl. Acad. Sci. USA 98:4569-4574, 2001). Here we show that several H/ACA snoRNP components are weakly but specifically immunoprecipitated with epitope-tagged Naf1p, suggesting that the latter protein is involved in H/ACA snoRNP biogenesis, trafficking, and/or function. Consistent with this, we find that depletion of Naf1p leads to a defect in 18S rRNA accumulation. Naf1p is unlikely to directly assist H/ACA snoRNPs during pre-rRNA processing in the dense fibrillar component of the nucleolus for two reasons. Firstly, Naf1p accumulates predominantly in the nucleoplasm. Secondly, Naf1p sediments in a sucrose gradient chiefly as a free protein or associated in a complex of the size of free snoRNPs, whereas extremely little Naf1p is found in fractions containing preribosomes. These results are more consistent with a role for Naf1p in H/ACA snoRNP biogenesis and/or intranuclear trafficking. Indeed, depletion of Naf1p leads to a specific and dramatic decrease in the steady-state accumulation of all box H/ACA snoRNAs tested and of Cbf5p, Gar1p, and Nop10p. Naf1p is unlikely to be directly required for the synthesis of H/ACA snoRNP components. Naf1p could participate in H/ACA snoRNP assembly and/or transport.  相似文献   

8.
9.
10.
11.
Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the ‘Chord and Sgt1’ domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.  相似文献   

12.
Telomerase RNA is an essential component of the ribonucleoprotein enzyme involved in telomere length maintenance, a process implicated in cellular senescence and cancer. Vertebrate telomerase RNAs contain a box H/ACA snoRNA motif that is not required for telomerase activity in vitro but is essential in vivo. Using the Xenopus oocyte system, we have found that the box H/ACA motif functions in the subcellular localization of telomerase RNA. We have characterized the transport and biogenesis of telomerase RNA by injecting labeled wild-type and variant RNAs into Xenopus oocytes and assaying nucleocytoplasmic distribution, intranuclear localization, modification, and protein binding. Although yeast telomerase RNA shares characteristics of spliceosomal snRNAs, we show that human telomerase RNA is not associated with Sm proteins or efficiently imported into the nucleus. In contrast, the transport properties of vertebrate telomerase RNA resemble those of snoRNAs; telomerase RNA is retained in the nucleus and targeted to nucleoli. Furthermore, both nuclear retention and nucleolar localization depend on the box H/ACA motif. Our findings suggest that the H/ACA motif confers functional localization of vertebrate telomerase RNAs to the nucleus, the compartment where telomeres are synthesized. We have also found that telomerase RNA localizes to Cajal bodies, intranuclear structures where it is thought that assembly of various cellular RNPs takes place. Our results identify the Cajal body as a potential site of telomerase RNP biogenesis.  相似文献   

13.
Each of the many different box H/ACA ribonucleoprotein particles (RNPs) present in eukaryotes and archaea consists of four common core proteins and one specific H/ACA small RNA, which bears the sequence elements H (ANANNA) and ACA. Most of the H/ACA RNPs are small nucleolar RNPs (snoRNPs), which are localized in nucleoli, and are one of the two major classes of snoRNPs. Most H/ACA RNPs direct pseudouridine synthesis in pre-rRNA and other RNAs. One H/ACA small nucleolar RNA (snoRNA), vertebrate E1/U17 (snR30 in yeast), is required for pre-rRNA cleavage processing that generates mature 18S rRNA. E1 snoRNA is encoded in introns of protein-coding genes, and the evidence suggests that human E1 RNA undergoes uridine insertional RNA editing. The vertebrate E1 RNA consensus secondary structure shows several features that are absent in other box H/ACA snoRNAs. The available UV-induced RNA-protein crosslinking results suggest that the E1 snoRNP is asymmetrical in vertebrate cells, in contrast to other H/ACA snoRNPs. The vertebrate E1 snoRNP in cells is surprisingly complex: (i) E1 RNA contacts directly and specifically several proteins which do not appear to be any of the H/ACA RNP four core proteins; and (ii) multiple E1 RNA sites are needed for E1 snoRNP formation, E1 RNA stability, and E1 RNA-protein direct interactions.  相似文献   

14.
The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell extract and demonstrate that distributed sequence features of the hTR 3' hairpin synergize to improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase deficiencies associated with H/ACA protein variants.  相似文献   

15.
16.
The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3' moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies.  相似文献   

17.
In all eukaryotes, C/D small nucleolar ribonucleoproteins (C/D snoRNPs) are essential for methylation and processing of ribosomal RNAs. They consist of a box C/D small nucleolar RNA (C/D snoRNA) associated with four highly conserved nucleolar proteins. Recent data in HeLa cells and yeast have revealed that assembly of these snoRNPs is directed by NUFIP protein and other auxiliary factors. Nevertheless, the precise function and biological importance of NUFIP and the other assembly factors remains unknown. In plants, few studies have focused on RNA methylation and snoRNP biogenesis. Here, we identify and characterise the AtNUFIP gene that directs assembly of C/D snoRNP. To elucidate the function of AtNUFIP in planta, we characterized atnufip mutants. These mutants are viable but have severe developmental phenotypes. Northern blot analysis of snoRNA accumulation in atnufip mutants revealed a specific degradation of C/D snoRNAs and this situation is correlated with a reduction in rRNA methylation. Remarkably, the impact of AtNUFIP depends on the structure of snoRNA genes: it is essential for the accumulation of those C/D snoRNAs encoded by polycistronic genes, but not by monocistronic or tsnoRNA genes. We propose that AtNUFIP controls the kinetics of C/D snoRNP assembly on nascent precursors to overcome snoRNA degradation of aberrant RNPs. Finally, we show that AtNUFIP has broader RNP targets, controlling the accumulation of scaRNAs that direct methylation of spliceosomal snRNA in Cajal bodies.  相似文献   

18.
The RNA component of human telomerase (hTR) includes H/ACA and CR7 domains required for 3' end processing, localization, and accumulation. The terminal loop of the CR7 domain contains the CAB box (ugAG) required for targeting of scaRNAs to Cajal bodies (CB) and an uncharacterized sequence required for accumulation and processing. To dissect out the contributions of the CR7 stem loop to hTR processing and localization, we solved the solution structures of the 3' terminal stem loops of hTR CR7 and U64 H/ACA snoRNA, and the 5' terminal stem loop of U85 C/D-H/ACA scaRNA. These structures, together with analysis of localization, processing, and accumulation of hTRs containing nucleotide substitutions in the CR7 domain, identified the sequence and structural requirements of the hTR processing and CB localization signals and showed that these signals are functionally independent. Further, 3' end processing was found to be a prerequisite for translocation of hTR to CBs.  相似文献   

19.
20.
The isomerization of up to 100 uridines to pseudouridines (Psis) in eukaryotic rRNA is guided by a similar number of box H/ACA small nucleolar RNAs (snoRNAs), each forming a unique small nucleolar ribonucleoprotein particle (snoRNP) with the same four core proteins, NAP57 (also known as dyskerin or Cbf5p), GAR1, NHP2, and NOP10. Additionally, the nucleolar and Cajal body protein Nopp140 (Srp40p) associates with the snoRNPs. To understand the role of these factors in pseudouridylation, we established an in vitro assay system. Short site-specifically (32)P-labeled rRNA substrates were incubated with subcellular fractions, and the conversion of uridine to Psi was monitored by thin-layer chromatography after digestion to single nucleotides. Immunopurified box H/ACA core particles were sufficient for the reaction. SnoRNPs associated quantitatively and reversibly with Nopp140. However, pseudouridylation activity was independent of Nopp140, consistent with a chaperoning role for this highly phosphorylated protein. Although up to 14 bp between the snoRNA and rRNA were required for the in vitro reaction, rRNA pseudouridylation and release occurred in the absence of ATP and magnesium. These data suggest that substrate release takes place without RNA helicase activity but may be aided by the snoRNP core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号