首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of porcine platelet acyltransferases which catalyze the incorporation of unsaturated fatty acids into the 2 positions of phospholipids were compared with those of porcine liver microsomes and rat liver microsomes. There were significant differences in the relative rates of incorporation of acyl groups into phospholipids as catalyzed by the membranes from different species and organs. The 1-acylglycerophosphate acyltransferase system showed relatively broad specificity for saturated and unsaturated fatty acids, with 14- to 20-carbon chains, while unsaturated acyl-CoAs with 18- and 20-carbon chains were generally good substrates in the acylations of 1-acylglycerophosphocholine and 1-acylglycerophosphoinositol. ω-3 and ω-6 unsaturated fatty acids were recognized differently by different acyltransferase systems in platelets. When activities for combinations of ω-3 and ω-6 unsaturated acyl-CoAs with the same number of carbons and with similar number of double bonds were compared, ω-6 fatty acids were relatively more preferred substrates than ω-3 fatty acids for the 1-acylglycerophosphoinositol acyltransferase system as compared with 1-acylglycerophosphocholine acyltransferase system.  相似文献   

2.
Positional distribution of fatty acids in phospholipids from Brevibacterium ammoniagenes was analyzed to find that phosphatidylethanolamine consisted mainly of 1-saturated acyl 2-unsaturated acyl species while phosphatidylglycerol consisted mainly of 1-unsaturated acyl 2-saturated acyl species. Three acyltransferase systems were characterized in a membrane preparation--the acylations of glycerophosphate, 1-acyl-glycerophosphate, and 2-acyl-glycerophosphate--which appeared to be catalyzed by different enzymes. The distribution of fatty acids in the phosphatidylethanolamine molecule was not correlated simply with the specificities of these enzymes, but the relatively high specificity for palmitoyl-CoA of the glycerophosphate acyltransferase system to form 2-acyl-glycerophosphate, followed the relatively high specificity for oleoyl-CoA of the 2-acyl-glycerophosphate acyltransferase system, provided a basis for producing the major molecular species of phosphatidylglycerol.  相似文献   

3.
Ethanolamine glycerophospholipids of mammalian heart mitochondria have a high content of arachidonic acid. Since the presence of acyltransferases that acylate 1-radyl glycerophosphoethanolamine had not been reported in the organelle, it was not known whether this high arachidonate content could be attained by the deacylation-reacylation pathway. In this study we have detected the presence of acyl-CoA:1-acyl-glycerophosphoethanolamine acyltransferase and acyl-CoA:1-alkenyl-glycerophosphoethanolamine acyltransferase activities in the guinea pig heart mitochondria. Both acyltransferases were active with palmitoyl-, stearoyl-, oleoyl-, linoleoyl-, and arachidonoyl-CoAs, but the highest activities were obtained with arachidonoyl-CoA. The acyl-CoA specificities of the enzyme(s) did not reflect the fatty acid composition of the ethanolamine glycerophospholipids. The utilization of arachidonoyl-CoA by these acyltransferases in the guinea pig heart mitochondria suggests that these enzymes may play a significant role in contributing to the high arachidonate content of the ethanolamine glycerophospholipids. However, mechanisms beyond the acyl specificity of the reacylation reactions are also involved in the maintenance of the overall acyl composition of the ethanolamine glycerophospholipid in the cardiac mitochondria.  相似文献   

4.
Mouse L-M fibroblasts, grown in a serum-free medium, were supplemented with fatty acids of 16 and 18 carbon chain lengths that contain a cyclopentene ring in the ω position. These fatty acids, unnatural to mammalian systems, were incorporated into the major lipid classes of L-M fibroblasts. Supplementation with the cyclopentenyl fatty acids caused an accumulation of neutral glycerolipids and marked inhibition of cell growth. Following the addition of supplement, the cells became more rounded. Of particular interest was the fact that the phospholipid fraction isolated from treated cells contained cyclic fatty acids that accounted for as much as 24% of the total phospholipid acyl groups. Unlike the pattern of distribution displayed by endogenous natural monoenes, the majority of the cyclic acid present was esterified in the sn-1 position of both phosphatidylcholine and phosphatidylethanolamine. The 18-carbon cyclic fatty acid [chaulmoogric acid, 13-(2-cyclopenten-1-yl)tridecanoic acid] was incorporated at the expense of the endogenous C-16:0, C-18:0, and C-18:1 fatty acids of the glycerophospholipids. The esterification altered the ratio of saturated to unsaturated acyl groups in the cellular phospholipids. No biochemical modification of chaulmoogric acid was detected.Our results imply that incorporation of unnatural fatty acid analogs, such as chaulmoogric acid, into cellular membranes would alter the functional properties of biological membranes that are dependent on membrane fluidity and structural organization.  相似文献   

5.
An enzymatic basis for the formation of pulmonary surfactant lipids in rat has been presented. The free fatty acid pools in lung and liver consisted mainly of palmitic, stearic, oleic, and arachidonic acids with relatively less polyunsaturated fatty acids in lung than in liver. The acyl chain specificities of the acyl-CoA synthetase systems in lung and liver microsomes were similar in that most of fatty acids found in the free fatty acid pools were effectively activated by both systems. The acyl-CoA pools had compositions significantly different from those of the free fatty acid pools in lung and liver with relatively more stearate and less polyunsaturated fatty acids. The lung acyl-CoA pool contained mainly palmitate (29%), stearate (31%), and oleate (22%) with very little polyunsaturated acyl-CoAs to compete for esterification. The use of an equimolar mixture of palmitoyl-CoA and arachidonoyl-CoA to acylate the endogenous monoacyl-glycerophosphocholine isomers in the lung microsomes yielded both the 2-palmitate and 2-arachidonate diacyl forms, whereas the major products formed by liver microsomes were the 2-arachidonate and 1-palmitate forms. These results indicate that the 1-acyl isomer is the major monoacyl-glycerophosphocholine species serving as substrate in lung microsomes, whereas both 1-acyl and 2-acyl isomers are present in liver microsomes. Thus, the enrichment of saturated and oligoenoic acids in the acyl-CoA pool combined with the predominance of the 1-acyl isomer in the acyl acceptor pool and the relatively higher selectivity for palmitoyl-CoA by the 1-acyl-GPC acyltransferase activity of lung constitute an important basis for attributing some of the formation of pulmonary surfactant lipids in rats to acyltransferase action.  相似文献   

6.
Fatty acids present in glycerophospholipids isolated from Yoshida ascites hepatoma AH 130 are more randomly distributed among the 1- and 2-positions than are fatty acids of normal liver phospholipids. The relative abundance of unsaturated fatty acids at the 1-position was ascribed to the lower palmitate-specific glycerophosphate acyltransferase activity in mitochondria of the hepatoma cells, an observation supporting the conclusion put forward for the similar randomization observed in Ehrlich ascites cells (Haldar, D., Tso, W.-W. and Pullman, M.E. (1979) J. Biol. Chem. 254, 4502-4509). The relative abundance of saturated fatty acids at the 2-position could be ascribed to the relatively lower acyl-CoA:1-acyl-glycerophosphocholine acyltransferase activity and to the change in the selectivity of the hepatoma acyl-CoA:1-acyl-glycerophosphate acyltransferase system into the lung type. The relatively lower selectivity for arachidonoyl-CoA as compared with oleoyl-CoA of the 1-acyl-glycerophosphocholine acyltransferase system is consistent with the decrease in polyenoic fatty acid content at the 2-position of the hepatoma phospholipids.  相似文献   

7.
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis pathway in Saccharomyces cerevisiae. Disruption of the open reading frame YBL011w, corresponding to a gene previously identified as a choline transporter suppressor (SCT1), resulted in a substantial decrease of total cellular G-3-P acyltransferase activity. A yeast strain disrupted at the open reading frame YKR067w, which encodes a protein closely related to Sct1p, also exhibited a dramatic reduction in G-3-P acyltransferase activity. Molecular characterizations of the genes revealed that a missense mutation in YKR067w accounted for a defect in the activities of the G-3-P acyltransferase in the yeast mutant strain TTA1. Heterologous expression of YKR067w in Escherichia coli further confirmed its enzyme activity. These results indicate that YKR067w and YBL011w, designated herein as GAT1 and GAT2(SCT1), respectively, are yeast G-3-P acyltransferase genes. Furthermore, biochemical results are presented to show that both Gat1p and Gat2p(Sct1p) are G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferases. The fatty acyl specificity of Gat1p is similar to that of the mammalian microsomal G-3-P acyltransferase, as it can effectively utilize a broad range of fatty acids as acyl donors. In contrast, Gat2p(Sct1p) displayed preference toward 16-carbon fatty acids. The most notable of the altered phospholipid compositions of the gat1Delta and gat2(sct1)Delta strains are a decreased phosphatidic acid pool and an increased phosphatidylserine/phosphatidylinositol ratio. This did not appear to affect the mutants as no growth defect was found. However, null mutations of both GAT1 and GAT2(SCT1) are synthetically lethal to yeast.  相似文献   

8.
Particulate preparations obtained from cells of yeast Saccharomyces sake have been shown to possess glycerolphosphate acyltransferase and 1-acylglycerolphosphate acyltransferase activities. Glycerolphosphate acyltransferase exhibits a high specificity for saturated and monoenoic fatty acyl-CoA thioesters. When palmitoyl-CoA is employed as sole acyl group donor, the major lipid product is lysophosphatidic acid. 1-Acylglycerolphosphate acyltransferase of this yeast species has a rather strict specificity for monoenoic fatty acyl-CoA thioesters as acyl donor. These two acyltransferases are strongly inhibited in vitro by low concentrations of free fatty acids. 1-Acylglycerolphosphate acyltransferase is much more susceptible to fatty acid inhibition than glycerolphosphate acyltransferase. The inhibition is dependent not only on the concentration of fatty acid, but also on the length of exposure to fatty acid. Both saturated and unsaturated fatty acids inhibit the acyltransferase activities. The inhibitory effects of fatty acids cannot be ascribed to a nonspecific surfactant action of fatty acids. The present results support the view that free fatty acid serves as a regulator of glycerolipid synthesis.  相似文献   

9.
The glycerophospholipids of the protozoon Tetrahymena pyriformis W are unique in that the polyunsaturated fatty acid γ-linolenate (18:3Δ6,9,12) is a major component of both the sn-C-1 and sn-C-2 positions. Tetrahymena were incubated with [1-14C]γ-linolenate. The positional distribution of the radiolabeled fatty acid in the three major glycerophospholipids was determined. [1-14C]γ-linolenate was found at both carbons of the three lipids, in general agreement with the mass distribution of γ-linolenate, except for markedly greater labeling at the sn-C-2 position of phosphatidylcholine. We hypothesize that an acyltransferase exists in Tetrahymena that can esterify γ-linolenate at both carbons during glycerophospholipid biosynthesis.  相似文献   

10.
Phospholipid biosynthesis is a vital facet of bacterial physiology that begins with the synthesis of the fatty acids by a soluble type II fatty acid synthase. The bacterial glycerol-phosphate acyltransferases utilize the completed fatty acid chains to form the first membrane phospholipid and thus play a critical role in the regulation of membrane biogenesis. The first bacterial acyltransferase described was PlsB, a glycerol-phosphate acyltransferase. PlsB is a key regulatory point that coordinates membrane phospholipid formation with cell growth and macromolecular synthesis. Phosphatidic acid is then produced by PlsC, a 1-acylglycerol-phosphate acyltransferase. These two acyltransferases use thioesters of either CoA or acyl carrier protein (ACP) as the acyl donors and have homologs that perform the same reactions in higher organisms. However, the most prevalent glycerol-phosphate acyltransferase in the bacterial world is PlsY, which uses a recently discovered acyl-phosphate fatty acid intermediate as an acyl donor. This unique activated fatty acid is formed from the acyl-ACP end products of the fatty acid biosynthetic pathway by PlsX, an acyl-ACP:phosphate transacylase.  相似文献   

11.
Membrane preparations from Tetrahymena pyriformis catalyzed the acylations of glycerophosphate, isomeric monoacylglycerophosphate, and 1-acylglycerylphosphoryl-choline. Under the optimal conditions, glycerophosphate acyltransferase and 1-acylgly-cerophosphate acyltransferase used saturated and unsaturated acyl-CoA at comparable rates. The specificities of these acyltransferase systems for various acyl-CoAs as compared with the respective maximal velocities do not directly explain the fatty acid distribution in glycerophospholipids. However, the acylation of 2-acylglycerophosphate was highly selective for palmitate when the incubations were carried out in the presence of palmitoyl-CoA, oleoyl-CoA, 1-acylglycerophosphate, and 2-acylglycerophosphate. The 1-acylglycerylphosphorylcholine acyltransferase system showed relatively higher specificity for unsaturated acyl-CoA, which is consistent with the fatty acid pattern of phospholipids. Significant amounts of diglyceride and triglyceride were formed together with phosphatidic acid from acyl-CoA and glycerophosphate, indicating that the enzymes involved in triglyceride synthesis are closely associated with acyltransferase systems involved in phosphatidate synthesis in microsomes. These acyltransferase activities were found mainly in microsomes, and to a lesser extent, in pellicles, too. No significant difference was observed in the properties of acyltransferase systems in microsomes and pellicles.  相似文献   

12.
plsX (acyl-acyl carrier protein [ACP]:phosphate acyltransferase), plsY (yneS) (acyl-phosphate:glycerol-phosphate acyltransferase), and plsC (yhdO) (acyl-ACP:1-acylglycerol-phosphate acyltransferase) function in phosphatidic acid formation, the precursor to membrane phospholipids. The physiological functions of these genes was inferred from their in vitro biochemical activities, and this study investigated their roles in gram-positive phospholipid metabolism through the analysis of conditional knockout strains in the Bacillus subtilis model system. The depletion of PlsX led to the cessation of both fatty acid synthesis and phospholipid synthesis. The inactivation of PlsY also blocked phospholipid synthesis, but fatty acid formation continued due to the appearance of acylphosphate intermediates and fatty acids arising from their hydrolysis. Phospholipid synthesis ceased following PlsC depletion, but fatty acid synthesis continued at a high rate, leading to the accumulation of fatty acids arising from the dephosphorylation of 1-acylglycerol-3-P followed by the deacylation of monoacylglycerol. Analysis of glycerol 3-P acylation in B. subtilis membranes showed that PlsY was an acylphosphate-specific acyltransferase, whereas PlsC used only acyl-ACP as an acyl donor. PlsX was found in the soluble fraction of disrupted cells but was associated with the cell membrane in intact organisms. These data establish that PlsX is a key enzyme that coordinates the production of fatty acids and membrane phospholipids in B. subtilis.  相似文献   

13.
When rats were fed a corn oil versus a corn oil-fish oil diet the overall phospholipid content and composition as well as the subclass distribution of the choline- and ethanolamine-containing glycerophospholipids from neutrophils were not altered. The serine-containing glycerophospholipids were characterized by high levels of stearic and oleic acids. When fish oil was added to the diet it replaced some of the arachidonate in both the inositol- and the serine-containing glycerophospholipids. In the corn oil-fed animals, 25.2 and 33.6 mole %, respectively, of the molecular species of 1,2-diacyl- and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine contained arachidonate. The values for 1,2-diacyl and 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine were, respectively, 41 and 55.8 mole %. When half of the 5% corn oil in the diet was replaced by fish oil, there was a 53, 38, 27, and 25% reduction, respectively, in the level of arachidonate in these four lipid subclasses. The amount of 5,8,11,14,17-eicosapentaenoic acid incorporated into these four subclasses was always less than the decline in arachidonic acid. This was due, in part, to the acylation of small amounts of 22-carbon (n-3) acids into these lipids. Molecular species analysis demonstrated that 5,8,11,14,17-eicosapentaenoic acid paired with the same components at the sn-1 position, and in the same ratio, as did arachidonic acid. The amounts of 16- and 18-carbon saturated and unsaturated fatty acid at the sn-2 position were not altered by dietary change. Collectively, these findings suggest that 5,8,11,14,17-eicosapentaenoic and arachidonic acids are metabolized in a similar way by neutrophils. These studies also support the concept that neutrophils contain two metabolic pools of phospholipids. One pool is altered by dietary fat change while the pool containing 16- and 18-carbon acids is resistant to change when fish oil is included in the diet.  相似文献   

14.
Three 14C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[14C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[14C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[14C]docosahexaenoic acid (22:6(n-3)), were compared with [3H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.  相似文献   

15.
A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory activities of these molecules.  相似文献   

16.
The phospholipids from murine mastocytoma FMA3 and P-815 clone cells were quantitatively analyzed, and the major glycerophospholipids were examined for their fatty acyl chain distribution. In these cells, the content of histamine was less than 1/100 of normal mouse mast cells, and FMA3 cells had 1.5-fold as much histamine content as P-815 cells. The predominant phospholipid species of both mastocytoma FMA3 and P-815 were choline-containing glycerophospholipids (48%) and ethanolamine-containing glycerophospholipids (29%). The remaining minor constituents were sphingomyelin (6%, 7%), phosphatidylinositol (7%, 5%), phosphatidylserine (2%, 5%), cardiolipin (4%, 3%), and phosphatidic acid (2%, 1% for FMA3 and P-815, respectively). The choline-containing glycerophospholipids consisted of high amounts of 1-O-alkyl-2-acyl type (31%, 25%) and 1,2-diacyl type (63%, 66%) and a smaller amount of 1-O-alk-1'-enyl-2-acyl type (7%, 8%). In contrast, ethanolamine-containing glycerophospholipids were characterized by high contents of 1-O-alk-1'-enyl-2-acyl type (36%, 31%) and 1,2-diacyl type (55%, 58%), and a lower level of 1-O-alkyl-2-acyl type (12% and 11% for FMA3 and P-815, respectively). Unlike choline-containing glycerophospholipids and sphingomyelin that were rich in palmitic acid, ethanolamine-containing glycerophospholipids, phosphatidylserine and phosphatidylinositol showed a high proportion of stearic acid in the overall fatty acid composition. The content of arachidonic acid was highest in phosphatidylinositol. Sphingomyelin had a large amount of long chain and polyunsaturated fatty acids. In both choline- and ethanolamine-containing glycerophospholipids, the predominant fatty acids in the sn-1-position were palmitic, stearic, and oleic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs.  相似文献   

18.
The fatty acid and positional specificities of Saccharomyces cerevisiae (UI-SACCH) and Schizosaccharomyces octosporus (NRRL Y-854) in the hydrolysis of lard were studied by using gas-liquid chromatography. Synthetic triglycerides were used to determine the positional specificities of the lipases of both organisms. Palmitic acid is specifically cleaved from all three triglyceride ester positions by S. cerevisiae, while S. octosporus was able to cleave stearic acid at either position 1 or position 3 of the glycerol moiety. Preparative scale fermentation with 200 g of lard per liter yielded 48.4 g of palmitic acid per liter with S. cerevisiae and 42 g of stearic acid per liter with S. octosporus. The free fatty acids produced by microbial transformation of lard were characterized spectrally (1H and C nuclear magnetic resonance and mass spectrometry) and chromatographically (thin-layer and gas chromatographies).  相似文献   

19.
Vogel G  Browse J 《Plant physiology》1996,110(3):923-931
Many oilseed plants accumulate triacylglycerols that contain unusual fatty acyl structures rather than the common 16- and 18-carbon fatty acids found in membrane lipids of these plants. In vitro experiments demonstrate that triacylglycerols are synthesized via diacylglycerols in microsomal preparations and that this same sub-cellular fraction is the site for the synthesis of phosphatidylcholine, which in seeds is synthesized from diacylglycerol by CDP-choline: diacylglycerol cholinephosphotransferase. In microsomes from Cuphea lanceolata, a plant that accumulates fatty acids with 10 carbons and no double bonds (10:0) in its oil, the diacylglycerol acyltransferase exhibited 4-fold higher activity with 10:0/10:0 molecular species of diacylglycerol than with molecular species containing 18-carbon fatty acids. In castor bean (Ricinus communis), which accumulates oil containing ricinoleic acid, diricinoleoyldiacylglycerol was the favored substrate for triacylglycerol synthesis. In contrast to these modest specificities of the diacylglycerol acyltransferases, the cholinephosphotransferases from these plants and from safflower (Carthamus tinctorius) and rapeseed (Brassica napus) showed little or no specificity across a range of different diacylglycerol substrates. Consideration of these results and other data suggests that the targeting of unusual fatty acids to triacylglycerol synthesis and their exclusion from membrane lipids are not achieved on the basis of the diacylglycerol substrate specificities of the enzymes involved and may instead require the spatial separation of two different diacylglycerol pools.  相似文献   

20.
Abstract— Phospholipids and sphingolipids from brains of normal and Jimpy mice were isolated in a pure form by thin-layer chromatographic procedures. The fatty acid composition of the major phospholipids, i.e. ethanolamine glycerophospholipids, serine glycerophospholipids, choline glycerophospholipids and inositol glycerophospholipids, as well as sphingomyelin, cerebrosides and sulphatides was determined by gas-liquid chromatography. A specific fatty acid pattern for each of the four glycerophospholipids was found. The fatty acid composition of inositol glycerophospholipid, which has not previously been studied in mouse brain, was characterized by a high concentration of arachidonic acid. After 16 days of age, fatty acid analysis showed definite differences between the phospholipids from normal and mutant brains. A small increase of polyunsaturated fatty acids in glycerophospholipids of ethanolamine, serine and choline from the Jimpy central nervous system was found, which has been explained by the myelin deficiency. Sphingomyelin, cerebrosides and sulphatide analyses showed a wide distribution of saturated and mono-unsaturated fatty acids in both normal and mutant mice. A reduction in the amount of long-chain fatty acids was demonstrated in mutant brain sphingolipids; in sulphatides and cerebrosides, the amount of non-hydroxy fatty acids was reduced to a greater extent than in sphingomyelin. The distribution of fatty acids in sphingolipids from the myelin and microsomal fractions was also investigated in both types of mice. Cerebrosides were characterized by a high content of long-chain fatty acids in myelin as well as in microsomes. Sulphatides and sphingomyelin, on the other hand, showed a higher content of medium-chain fatty acids in microsomes than in myelin. In the mutant brain, the amount of long-chain fatty acids was reduced in both subcellular fractions. The deviation from normal in the pattern of fatty acid distribution in Jimpy brain is discussed in relation to the current concepts of glycolipid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号