首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between Fc receptor specific for IgG2b (Fc gamma 2bR) and membrane adenylate cyclase was investigated. The specific binding of IgG2b immune complexes to P388D1 cell surface Fc gamma 2bR was found to inhibit the basal, forskolin-stimulated, and NaF-stimulated activities of membrane adenylate cyclase by 53%, 57%, and 31%, respectively. On the other hand, the binding of IgG2a immune complexes to cell surface Fc gamma 2aR increased the basal activity about 2.5-fold and the forskolin- and NaF-stimulated activities slightly. The fusion of liposomes containing Fc gamma 2bR, which was obtained as phosphatidylcholine (PC) binding protein as previously described, with the cyc- membrane preparations resulted in the marked suppression of membrane adenylate cyclase, whereas the fusion of liposomes containing Fc gamma 2a, which was obtained as IgG-binding protein, led to about a 2.7-fold increase. The Fc gamma 2bR-mediated inhibition of adenylate cyclase may be due to the temporary change of the lipid environment caused by the action of phospholipase A2, which was previously shown to be associated with Fc gamma 2bR, since (1) addition of snake venom phospholipase A2 or cholate-solubilized PC-binding protein to P388D1 membrane was found to inhibit adenylate cyclase in a dose-dependent manner, (2) prior treatment of snake venom phospholipase A2 or PC-binding protein with a specific inhibitor, p-bromophenacyl bromide, significantly reduced their inhibitory action, and (3) a product of phospholipase A2 action, arachidonic acid, was found to be an effective inhibitor of membrane adenylate cyclase, whereas the other product, lysophosphatidylcholine, was much less inhibitory than arachidonic acid. Arachidonic acid appeared to interfere with the functions of both guanine nucleotide-binding stimulatory (Gs) protein and the catalytic subunit of adenylate cyclase, since exogenously added arachidonic acid significantly suppressed the GTPase activity of P388D1 membrane and the forskolin response of the adenylate cyclase activity of Gs protein deficient cyc- membrane. The primary site of action of lysophosphatidylcholine is not clear but may be other than Gs protein and/or the catalytic subunit, since it did not change either GTPase activity of P388D1 membrane or the response to forskolin of adenylate cyclase of cyc- membrane. The Fc gamma 2bR/phospholipase A2 mediated inhibition of adenylate cyclase would be a transient event in viable cells, since phospholipase A2 did not inhibit adenylate cyclase in the presence of microsomal fraction, mitochondria, and coenzyme A, suggesting the occurrence of rapid acylation of CoA and reacylation of lysolecithin.  相似文献   

2.
A variant (HS-1) of a murine macrophage cell line (P388D1) was obtained by cell cluster technique based on the Ia antigen expression induced by lymphokines. Receptors for both IgG2a and IgG2b but no detectable I-Ad are expressed on the surface of the majority of HS-1 cells. Exposure of HS-1 cell to concanavalin A supernatant or recombinant IFN-gamma resulted in the induction of I-Ad antigens on greater than 90% of the cells within 48 hr. The effects of lymphokines were transient and dependent on the synthesis of messenger RNA because the removal of lymphokines or the presence of actinomycin D both blocked Ia expression. The prior or simultaneous binding of monoclonal IgG2a or IgG2b antibodies complexed with sheep erythrocytes to respective cell surface Fc gamma R suppressed the Ia antigen inducing activity of lymphokines. Neither antibody nor antigen alone could suppress the effect of lymphokines. Inhibitors of phospholipase A2 or cyclooxygenase, which have been shown previously to suppress Fc gamma 2bR, but not Fc gamma 2aR, triggered activation of the adenylate cyclase system and reversed Fc gamma 2bR- but not Fc gamma 2aR-mediated suppression of IFN-gamma-induced Ia antigen expression.  相似文献   

3.
T Suzuki 《FASEB journal》1991,5(2):187-193
Mouse macrophages and macrophage cell lines such as P388D1 or J774 carry at least two distinct Fc gamma receptors (Fc gamma R): one specific for the Fc portion of IgG2a (Fc gamma aR, also classified as Fc gamma RI) and another for IgG2b (Fc gamma 2bR, also classified as Fc gamma RII beta). These Fc gamma Rs should transmit, upon binding of an appropriate ligand, a specific signal that leads to the regulation of macrophage functions, as the interaction of immune complex with cell surface receptor has been shown to lead to suppression of the humoral immune response or B cell differentiation, to the destruction of target cells by antibody-dependent cell-mediated cytotoxicity, to activation of arachidonic acid metabolic cascade, to the phagocytosis of opsonized particles, or to the generation of superoxide anion. In this review, we first describe evidence that Fc gamma 2aR and Fc gamma 2bR are associated with casein kinase II and phospholipase A2 activity, respectively. We will then discuss a potential role for these enzymatic activities in signal transduction pathways that leads to the activation of the arachidonic acid metabolic cascade and adenylate cyclase, to the regulation of phagocytosis, and to the suppression of interferon-gamma action to induce Ia antigens.  相似文献   

4.
The nature of signals transmitted by two types of Fc gamma receptors (one specific for IgG2b and the other for IgG2a) present on the surface of a murine macrophage cell line (P388D1) was investigated. Specific binding of IgG2b (presented as EA2b) to cell surface Fc gamma 2br triggered the release of 3H-arachidonic acid and 3H-prostaglandins (PG) from P388D1 cells that were prelabeled with 3H-arachidonate. The release of 3H-arachidonic acid, which increased in a dose-dependent manner, was enhanced by exogenous Ca++ (1.25 mM) and was completely blocked by ethylenediaminetetraacetate (EDTA) (4 mM) or a phospholipase A2 inhibitor, p-bromophenacylbromide (7 microgram/ml). A cyclooxygenase inhibitor, indomethacin (9 microgram/ml), reduced the 3H-arachidonic acid release and completely blocked the conversion of arachidonate into PG. Cytochalasin D (1 microgram/ml), which inhibited the phagocytosis of immune complexes by 90% of P388D1 cells, did not affect the Fc gamma 2bR-triggered release of arachidonic acid. Specific binding of IgG2a (presented as EA2a) to cell surface Fc gamma 2aR did not trigger the release of either 3H-arachidonic acid or 3H-PG from P388D1 cells. Our data demonstrate a signal for the activation of the arachidonic acid metabolic cascade is transmitted by Fc gamma 2bR, but not by Fc gamma 2aR, on the surface of P388D1 cells, probably through the initial activation of the phospholipase A2 activity associated with Fc gamma 2bR.  相似文献   

5.
The mechanisms of Fc gamma R-mediated phagocytosis of immune complexes were investigated by the use of a murine macrophage-like cell line (P388D1) and murine peritoneal resident macrophages. About 40 to 80% of P388D1 cells phagocytosed SRBC coated with IgG2a subclass anti-SRBC mAb (EA2a) within 60 min, whereas only 10 to 20% of the cells phagocytosed EA2b during the same period. The treatment of P388D1 cells with inhibitors of phospholipase A2 (p-bromophenacylbromide, EGTA, or dexamethasone) or of cyclooxygenase (indomethacin or aspirin) significantly promoted the Fc gamma 2bR-mediated phagocytosis of EA2b, but did not affect the Fc gamma 2aR-mediated phagocytosis of EA2a. These results suggest that the activation of phospholipase A2 activity associated with Fc gamma 2bR may lead to the inhibition of phagocytosis of EA2b. This inhibition appeared to be due to the blockade of the interaction of Fc gamma 2bR with various cytoskeletal components, because the association of Fc gamma 2bR and these cytoskeletal components, which could be eliminated by cytochalasin D, was found to be increased by the inhibition of phospholipase A2 activity.  相似文献   

6.
This study presents the results of a kinetic investigation of adenylate cyclase in human polymorphonuclear leukocytes. In the presence of a saturating concentration of substrate (1 mM), the basal activity was increased severalfold by increasing Mg2+ from 1 to 25 mM. A Hill coefficient of 1.9 was obtained for Mg2+ or ATP. The data suggest cooperative interactions between the substrate binding sites in the neutrophil adenylate cyclase complex. It has been observed that guanyl-5'-yl imidodiphosphate (Gpp(NH)p) (S0.5 = 10 MUM) significantly increased and Ca2+ (S0.5 = 0.5 MM) significantly decreased only the Vmax without affecting the Hill coefficient or S0.5 for ATP. The Hill coefficients for Ca2+ or Gpp(NH)p were 0.9 and 0.8, respectively. The Hill coefficient for Ca2+ was not changed by the increased Gpp(NH)p concentrations. It appears that neutrophil adenylate cyclase has distinct binding sites for Gpp(NH)p and Ca2+, one for each compond. The binding of ligands is not changed by the other effectors and the action is directed only toward the Vmax of the enzyme. The stimulatory action of positive effectors (prostaglandin E1, isoproterenol, histamine) was enhanced by Gpp(NH)p and depressed by Ca2+. No preferential stimulation by Gpp(NH)p nor inhibition by Ca2+ of the action of the positive effectors has been found. The data suggests that only one type of catalytic subunit responds to the action of several positive effectors. Extracellular Gpp(NH)p or Ca2+ do not affect the cyclic adenosine 3':5'-monophosphate (cAMP) level in whole neutrophils and the effect of positive effectors on cAMP production is also not significantly changed by 5 mM Ca2+ or 0.1 mM Gpp(NH)p. Ionophore A23187 in the presence of 5 mM Ca2+ enhances Ca2+ entry into cells and decreases the basal cAMP formation. It appears that Gpp(NH)p or Ca2+ act only at the intracellular site of the adenylate cyclase complex.  相似文献   

7.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

8.
The Fc portion of rabbit anti-mouse immunoglobulin (Ig) antibodies interferes with anti-Ig-induced B lymphocyte activation as measured by DNA synthesis on day 3 of culture or maturation to Ig-secreting cells in the presence of soluble helper factors on day 4 or 5. To investigate this Fc-dependent effect at an earlier stage in B cell activation, rabbit IgG anti-mouse mu-chain- or delta-chain-specific antibodies were compared with their F(ab')2 fragments for the ability to induce mouse B cells to undergo blast transformation, as defined by an increase in cell volume during the first 24 hr of culture. Both F(ab')2 anti-Ig reagents induce blast transformation, although F(ab')2 anti-mu antibodies induce a greater size change than F(ab')2 anti-delta antibodies. Whole anti-mu or anti-delta antibodies do not induce blast transformation; however, in the presence of a monoclonal anti-mouse Fc gamma receptor antibody that blocks IgG binding to Fc gamma receptors (Fc gamma R), whole anti-mu or anti-delta antibodies induce blast transformation as well as their F(ab')2 fragments. Because the anti-Fc gamma R antibody alone has no effect on blast transformation, it appears that the simultaneous binding of membrane IgM (or IgD) and Fc gamma R by whole anti-Ig antibodies prevents this early event in membrane Ig-induced B cell activation.  相似文献   

9.
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.  相似文献   

10.
Characterization of the Fc gamma receptor on human platelets   总被引:4,自引:0,他引:4  
IgG-containing immune complexes may play a role in the immune destruction of human platelets by interacting with an Fc gamma receptor on the platelet surface. We studied the platelet Fc gamma receptor and characterized its interaction with IgG ligand and anti-Fc gamma receptor monoclonal antibodies. Oligomers of IgG, but not monomeric IgG, bound to platelets and the number of binding sites was significantly increased at low ionic strength. Ligand-binding studies indicated that normal human platelets express a single Fc gamma receptor (Fc gamma RII) with 8559 +/- 852 sites per cell, Kd = 12.5 +/- 1.7 X 10(-8) M using trimeric IgG. Results of studies with bivalent and Fab monoclonal anti-Fc gamma RII were consistent with each Fc gamma receptor expressing two epitopes recognized by the antibody. The number of Fc gamma binding sites and affinity of binding were unchanged by the presence of 2.0 mM Mg2+ or 10 micrograms/ml cytochalasin B. Platelet stimulation with thrombin or ADP in the presence of fibrinogen also did not alter the number of Fc gamma binding sites or the affinity of binding. However, platelets preincubated with 5 microM dexamethasone expressed a decreased number of Fc gamma binding sites as well as decreased IgG-dependent platelet aggregation. Platelets from patients with Glanzmann's thrombasthenia and from patients with the Bernard Soulier syndrome expressed a normal number and affinity of Fc gamma binding sites. The data suggest that platelet Fc gamma RII binding of trimeric IgG occurs independent of actin filament interaction, Mg2+, ADP, or thrombin and does not require GPIIb/IIIa or GPIIb/IIIa-fibrinogen interaction. Furthermore, this receptor appears to be normally expressed on GPIb-deficient platelets and susceptible to modulation by glucocorticoids. Finally, the Fc gamma-binding protein was isolated from whole platelets as a 220-kDa protein which upon reduction dissociates into 50,000 Mr subunits.  相似文献   

11.
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.  相似文献   

12.
The mechanisms by which forskolin stimulates adenylate cyclase activity in turkey erythrocyte membranes and is influenced by manganese and Gpp(NH)p were studied. Forskolin-dependent adenylate cyclase activity in particulate turkey erythrocyte membranes is enhanced following preincubation of membranes with isoproterenol and GMP (cleared membranes). In contrast, solubilization of turkey erythrocyte membranes, previously cleared, renders them relatively refractory to forskolin but not to Gpp(NH)p. Whereas adenylate cyclase activity due to the simultaneous presence of forskolin and Mn2+ in particulate turkey erythrocyte membranes is additive, their copresence becomes synergistic after solubilization. The apparent Kact for forskolin activation of adenylate cyclase is not influenced by clearance or by the presence of Mn2+ in particulate turkey erythrocyte membranes. Following solubilization, the Vmax for forskolin-dependent adenylate cyclase activation determined in the presence of Mn2+ is also independent of clearance. Forskolin activation of turkey erythrocyte adenylate cyclase appears to be influenced at sites in addition to the catalytic unit.  相似文献   

13.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

14.
The prostaglandin endoperoxide prostaglandin H2 (15-hydroxy-9alpha, 11alpha-peroxidoprosta-5,13-dienoic acid) inhibits basal and hormone-stimulated adenylate cyclase in fat cell ghosts. This inhibition by prostaglandin H2 has been found to be antagonized by GTP and Gpp(NH)p. Dose response studies have shown GTP and Gpp(nh)p to be maximally effective at 3.3 muM, the lowest concentration tested. Although the system is exceedingly sensitive to modulation by GTP or Gpp(NH)p UTP, CTP, GMP, and cyclic GMP did not antagonize the antihormone activity of prostaglandin H2. Kinetic studies indicate that the GTP or Gpp(NH)p antagonism of prostaglandin H2 is observable on initial rates of cyclic AMP synthesis, and persists throughout the adenylate cyclase measurements. Preincubation of fat cell ghosts with GTP followed by washing and resuspension results in a prostaglandin H2-sensitive adenylate cyclase system. However, the same preincubation experiment with Gpp(NH)p produces an irreversible antagonism of the prostaglandin H2 inhibition of hormone-stimulated adenylate cyclase. It is suggested that prostaglandin H2 stabilizes the fat cell adenylate cyclase system in a state that is resistant to hormone stimulation, and GTP or Gpp(NH)p overcome this stabilization.  相似文献   

15.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

16.
Human leukocyte receptor IIIa (Fc gamma RIIIa) plays an important role in mediating therapeutic antibodies' antibody-dependent cellular cytotoxicity (ADCC), which is closely related to the clinical efficacy of anticancer processes in humans in vivo. The removal of the core fucose from oligosaccharides attached to the Fc region of antibodies improves Fc gamma RIIIa binding, allowing the antibodies to enhance dramatically the antibody effector functions of ADCC. In this study, the contribution of Fc gamma RIIIa oligosaccharides to the strength of the Fc gamma RIIIa/antibody complex was analyzed using a serial set of soluble human recombinant Fc gamma RIIIa lacking the oligosaccharides. A nonfucosylated antibody IgG1 appeared to have a significantly higher affinity to the wild-type Fc gamma RIIIa fully glycosylated at its five N-linked oligosaccharide sites than did the fucosylated IgG1, and this increased binding was almost abolished once all of the Fc gamma RIIIa glycosylation was removed. Our gain-of-function analysis in the Fc gamma RIIIa oligosaccharide at Asn-162 (N-162) confirmed that N-162 is the element required for the high binding affinity to nonfucosylated antibodies, as previously revealed by loss-of-function analyses. Interestingly, beyond our expectation, the Fc gamma RIIIa modified by N-162 alone showed a significantly higher binding affinity to nonfucosylated IgG1 than did the wild-type Fc gamma RIIIa. Attachment of the other four oligosaccharides, especially the Fc gamma RIIIa oligosaccharide at Asn-45 (N-45), hindered the high binding affinity of Fc gamma RIIIa to nonfucosylated IgG1. Our data clearly demonstrated that N-45 is an inhibitory element for the high Fc gamma RIIIa binding affinity mediated by N-162 to nonfucosylated antibodies. This information can be exploited for the structural-based functional study of Fc gamma RIIIa.  相似文献   

17.
Alterations in receptor-independent activation of adenylate cyclase during proliferation and differentiation of L6E9 myoblasts were studied using Mn2+, forskolin, and Gpp(NH)p. Analyses were performed 3, 6, and 10 days following subculture, corresponding to onset of proliferation, end of proliferation with start of differentiation, and completion of differentiation, respectively. The apparent activation constant for Mn2+ decreases with the age of the culture; the apparent activation constant for Mg2+ does not. Bimodal activation by Mn2+, i.e., at concentrations greater than 10 mM, results in total adenylate cyclase activity less than the Vmax and occurs exclusively in differentiated cultures. Independent of the presence of Mg2+, forskolin activation occurs with low-and high-affinity constants in differentiated cultures and with a low affinity constant in youngest cultures; intermediate cultures (day 6) demonstrate low- and high-affinity activation only in the presence of high Mg2+. In contrast, the Vmax for forskolin increases with increasing Mg2+ in all culture ages. Although Gpp(NH)p-dependent adenylate cyclase activation occurs with an apparent activation constant independent of culture age and Mg2+, low Mg2+ fosters bimodal activation by Gpp(NH)p, i.e., above 100 microM nucleotide, total adenylate cyclase activity is less than the Vmax. The loss of stimulatory capacity by high Gpp(NH)p is greatest in differentiated cultures. Additional experiments are presented to substantiate that bimodal activation by Gpp(NH)p is specific. Cholera- and pertussis toxin-dependent ADP ribosylation patterns demonstrate a marked decrease in both Ns and Ni in differentiated cultures. The data suggest that alterations in postreceptor activation of adenylate cyclase during the course of differentiation and proliferation are mediated by guanine nucleotide binding proteins as well as by allosteric cation regulatory units.  相似文献   

18.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

19.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

20.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号