首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unveiling substrate RNA binding to H/ACA RNPs: one side fits all   总被引:1,自引:0,他引:1  
The H/ACA RNP pseudouridylases function on a large number of extraordinarily complex RNA substrates including pre-ribosomal and small nuclear RNAs. Recent structural data show that H/ACA RNPs capture their RNA substrates via a simple one-sided attachment model. However, the precise placement of each RNA substrate into the active site of the catalytic subunit relies on the essential functions of the RNP proteins. The specific roles of each H/ACA RNP protein are being elucidated by a combination of structural and biochemical studies.  相似文献   

2.
3.
H/ACA RNA-protein complexes, comprised of four proteins and an H/ACA guide RNA, modify ribosomal and small nuclear RNAs. The H/ACA proteins are also essential components of telomerase in mammals. Cbf5 is the H/ACA protein that catalyzes isomerization of uridine to pseudouridine in target RNAs. Mutations in human Cbf5 (dyskerin) lead to dyskeratosis congenita. Here, we describe the 2.1 A crystal structure of a specific complex of three archaeal H/ACA proteins, Cbf5, Nop10, and Gar1. Cbf5 displays structural properties that are unique among known pseudouridine synthases and are consistent with its distinct function in RNA-guided pseudouridylation. We also describe the previously unknown structures of both Nop10 and Gar1 and the structural basis for their essential roles in pseudouridylation. By using information from related structures, we have modeled the entire ribonucleoprotein complex including both guide and substrate RNAs. We have also identified a dyskeratosis congenita mutation cluster site within a modeled dyskerin structure.  相似文献   

4.
5.
H/ACA guide RNAs, proteins and complexes   总被引:1,自引:0,他引:1  
H/ACA guide RNAs direct site-specific pseudouridylation of substrate RNAs by forming ribonucleoprotein (RNP) complexes with pseudouridine synthase Cbf5 and three accessory proteins. Recently determined crystal structures of H/ACA protein complexes and a fully assembled H/ACA RNP complex have provided significant insights into the architecture, assembly and mechanism of action of RNA-guided pseudouridine synthase. The binding of guide RNA is directed by its conserved secondary structure and sequence motifs, which enables guide RNA with different sequences to be incorporated into the same protein complex. Accessory proteins and peripheral domains crucially coordinate the position of guide RNA, and possibly regulate the reaction process.  相似文献   

6.
H/ACA RNP complexes change uridines to pseudouridines in target non-coding RNAs in eukaryotes and archaea. H/ACA RNPs are comprised of a guide RNA and four essential proteins: Cbf5 (pseudouridine synthase), L7Ae, Gar1 and Nop10 in archaea. The guide RNA captures the target RNA via two antisense elements brought together to form a contiguous binding site within the pseudouridylation pocket (internal loop) of the guide RNA. Cbf5 and L7Ae interact independently with the guide RNA, and here we have examined the impacts of these proteins on the RNA in nucleotide protection assays. The results indicate that the interactions observed in a fully assembled H/ACA RNP are established in the sub-complexes, but also reveal a unique Cbf5–guide RNA interaction that is displaced by L7Ae. In addition, the results indicate that L7Ae binding at the kink (k)-turn of the guide RNA induces the formation of the upper stem, and thus also the pseudouridylation pocket. Our findings indicate that L7Ae is essential for formation of the substrate RNA binding site in the archaeal H/ACA RNP, and suggest that k-turn-binding proteins may remodel partner RNAs with important effects distant from the protein-binding site.  相似文献   

7.
Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP components between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the active site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.  相似文献   

8.
Zhou J  Liang B  Li H 《RNA (New York, N.Y.)》2011,17(2):244-250
Cbf5 is the catalytic subunit of the H/ACA small nucleolar/Cajal body ribonucleoprotein particles (RNPs) responsible for site specific isomerization of uridine in ribosomal and small nuclear RNA. Recent evidence from studies on archaeal Cbf5 suggests its second functional role in modifying tRNA U55 independent of guide RNA. In order to act both as a stand-alone and a RNP pseudouridine synthase, Cbf5 must differentiate features in H/ACA RNA from those in tRNA or rRNA. Most H/ACA RNAs contain a hallmark ACA trinucleotide downstream of the H/ACA motif. Here we challenged an archaeal Cbf5 (in the form of a ternary complex with its accessory proteins Nop10 and Gar1) with T-stem-loop RNAs with or without ACA trinucleotide in the stem. Although these substrates were previously shown to be substrates for the bacterial stand-alone pseudouridine synthase TruB, the Cbf5-Nop10-Gar1 complex was only able to modify those without ACA trinucleotide. A crystal structure of Cbf5-Nop10-Gar1 trimer bound with an ACA-containing T-stem-loop revealed that the ACA trinucleotide detracted Cbf5 from the stand-alone binding mode, thereby suggesting that the H/ACA RNP-associated function of Cbf5 likely supersedes its stand-alone function.  相似文献   

9.
Pseudouridine (Ψ) are frequently modified residues in RNA. In Eukarya, their formation is catalyzed by enzymes or by ribonucleoprotein complexes (RNPs) containing H/ACA snoRNAs. H/ACA sRNA and putative ORFs for H/ACA sRNP proteins (L7Ae, aCBF5, aNOP10 and aGAR1) were found in Archaea. Here, by using Pyrococcus abyssi recombinant proteins and an in vitro transcribed P.abyssi H/ACA sRNA, we obtained the first complete in vitro reconstitution of an active H/ACA RNP. Both L7Ae and the aCBF5 RNA:Ψ synthase bind directly the sRNA; aCBF5 also interacts directly and independently with aNOP10 and aGAR1. Presence of aCBF5, aNOP10 and a U residue at the pseudouridylation site in the target RNA are required for RNA target recruitment. In agreement, we found that the aCBF5–aNOP10 pair is the minimal set of proteins needed for the formation of a particle active for pseudouridylation. However, particles more efficient in targeted pseudouridylation can be formed with the addition of proteins L7Ae and/or aGAR1. Although necessary for optimal activity, the conserved ACA motif in the sRNA was found to be not essential.  相似文献   

10.
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.  相似文献   

11.
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.  相似文献   

12.
13.
The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell extract and demonstrate that distributed sequence features of the hTR 3' hairpin synergize to improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase deficiencies associated with H/ACA protein variants.  相似文献   

14.
15.
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.  相似文献   

16.
Huang C  Wu G  Yu YT 《Nature protocols》2012,7(4):789-800
Isomerization from uridine to pseudouridine (pseudouridylation) is largely catalyzed by a family of small ribonucleoproteins called box H/ACA RNPs, each of which contains one unique small RNA-the box H/ACA RNA. The specificity of the pseudouridylation reaction is determined by the base-pairing interactions between the guide sequence of the box H/ACA RNA and the target sequence within an RNA substrate. Thus, by creating a new box H/ACA RNA harboring an artificial guide sequence that base-pairs with the substrate sequence, one can site-specifically introduce pseudouridines into virtually any RNA (e.g., mRNA, ribosomal RNA, small nuclear RNA, telomerase RNA and so on). Pseudouridylation changes the properties of a uridine residue and is likely to alter the role of its corresponding RNA in certain cellular processes, thereby enabling basic research into the effects of RNA modifications. Here we take a TRM4 reporter gene (also known as NCL1) as an example, and we present a protocol for designing a box H/ACA RNA to site-specifically pseudouridylate TRM4 mRNA. Disease-related mutation can result in early termination of translation by creating a premature termination codon (PTC); however, pseudouridylation at the PTC can suppress this translation termination (nonsense suppression). Thus, the experimental procedures described in this protocol may provide a novel way to treat PTC-related diseases. This protocol takes 10-13 d to complete.  相似文献   

17.
Agarwal R  Binz T  Swaminathan S 《Biochemistry》2005,44(35):11758-11765
The seven serologically distinct Clostridium botulinum neurotoxins (BoNTs A-G) are zinc endopeptidases which block the neurotransmitter release by cleaving one of the three proteins of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor complex (SNARE complex) essential for the fusion of vesicles containing neurotransmitters with target membranes. These metallopeptidases exhibit unique specificity for the substrates and peptide bonds they cleave. Development of countermeasures and therapeutics for BoNTs is a priority because of their extreme toxicity and potential misuse as biowarfare agents. Though they share sequence homology and structural similarity, the structural information on each one of them is required to understand the mechanism of action of all of them because of their specificity. Unraveling the mechanism will help in the ultimate goal of developing inhibitors as antibotulinum drugs for the toxins. Here, we report the high-resolution structure of active BoNT/F catalytic domain in two crystal forms. The structure was exploited for modeling the substrate binding and identifying the S1' subsite and the putative exosites which are different from BoNT/A or BoNT/B. The orientation of docking of the substrate at the active site is consistent with the experimental BoNT/A-LC:SNAP-25 peptide model and our proposed model for BoNT/E-LC:SNAP-25.  相似文献   

18.
Meier UT 《Chromosoma》2005,114(1):1-14
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100–200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.  相似文献   

19.
Ribonucleoprotein complexes (RNP) remodeling by DEAD-box proteins is required at all stages of cellular RNA metabolism. These proteins are composed of a core helicase domain lacking sequence specificity; flanking protein sequences or accessory proteins target and affect the core's activity. Here we examined the interaction of eukaryotic initiation factor 4AI (eIF4AI), the founding member of the DEAD-box family, with two accessory factors, eIF4B and eIF4H. We find that eIF4AI forms a stable complex with RNA in the presence of AMPPNP and that eIF4B or eIF4H can add to this complex, also dependent on AMPPNP. For both accessory factors, the minimal stable complex with eIF4AI appears to have 1:1 protein stoichiometry. However, because eIF4B and eIF4H share a common binding site on eIF4AI, their interactions are mutually exclusive. The eIF4AI:eIF4B and eIF4AI:eIF4H complexes have the same RNase resistant footprint as does eIF4AI alone (9–10 nucleotides [nt]). In contrast, in a selective RNA binding experiment, eIF4AI in complex with either eIF4B or eIF4H preferentially bound RNAs much longer than those bound by eIF4AI alone (30–33 versus 17 nt, respectively). The differences between the RNase resistant footprints and the preferred RNA binding site sizes are discussed, and a model is proposed in which eIF4B and eIF4H contribute to RNA affinity of the complex through weak interactions not detectable in structural assays. Our findings mirror and expand on recent biochemical and structural data regarding the interaction of eIF4AI's close relative eIF4AIII with its accessory protein MLN51.  相似文献   

20.
Inositol monophosphatase (IMPase) family of proteins are Mg(2+) activated Li(+) inhibited class of ubiquitous enzymes with promiscuous substrate specificity. Herein, the molecular basis of IMPase substrate specificity is delineated by comparative crystal structural analysis of a Staphylococcal dual specific IMPase/NADP(H) phosphatase (SaIMPase - I) with other IMPases of different substrate compatibility, empowered by in silico docking and Escherichia coli SuhB mutagenesis analysis. Unlike its eubacterial and eukaryotic NADP(H) non-hydrolyzing counterparts, the composite structure of SaIMPase - I active site pocket exhibits high structural resemblance with archaeal NADP(H) hydrolyzing dual specific IMPase/FBPase. The large and shallow SaIMPase - I active site cleft efficiently accommodate large incoming substrates like NADP(H), and therefore, justifies the eminent NADP(H) phosphatase activity of SaIMPase - I. Compared to other NADP(H) non-hydrolyzing IMPases, the profound difference in active site topology as well as the unique NADP(H) recognition capability of SaIMPase - I stems from the differential length and orientation of a distant helix α4 (in human and bovine α5) and its preceding loop. We identified the length of α4 and its preceding loop as the most crucial factor that regulates IMPase substrate specificity by employing a size exclusion mechanism. Hence, in SaIMPase - I, the substrate promiscuity is a gain of function by trimming the length of α4 and its preceding loop, compared to other NADP(H) non-hydrolyzing IMPases. This study thus provides a biochemical - structural framework revealing the length and orientation of α4 and its preceding loop as the predisposing factor for the determination of IMPase substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号