首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous demonstration that mutants of 5S rRNA called mof9 can specifically alter efficiencies of programmed ribosomal frameshifting (PRF) suggested a role for this ubiquitous molecule in the maintenance of translational reading frame, though the repetitive nature of the 5S rDNA gene (>100 copies/cell) inhibited more detailed analyses. However, given the known interactions between 5S rRNA and ribosomal protein L5 (previously called L1 or YL3) encoded by an essential, single-copy gene, we monitored the effects of a series of well-defined rpl5 mutants on PRF and virus propagation. Consistent with the mof9 results, we find that the rpl5 mutants promoted increased frameshifting efficiencies in both the -1 and +1 directions, and conferred defects in the ability of cells to propagate two endogenous viruses. Biochemical analyses demonstrated that mutant ribosomes had decreased affinities for peptidyl-tRNA. Pharmacological studies showed that sparsomycin, a peptidyltransferase inhibitor that specifically increases the binding of peptidyl-tRNA with ribosomes, was antagonistic to the frameshifting defects of the most severe mutant, and the extent of sparsomycin resistance correlated with the severity of the frameshifting defects in all of the mutants. These results provide biochemical and physiological evidence that one function of L5 is to anchor peptidyl-tRNA to the P-site. A model is presented describing how decreased affinity of ribosomes for peptidyl-tRNA can affect both -1 and +1 frameshifting, and for the effects of sparsomycin.  相似文献   

2.
The Mof2/Sui1 Protein Is a General Monitor of Translational Accuracy   总被引:10,自引:3,他引:7       下载免费PDF全文
Although it is essential for protein synthesis to be highly accurate, a number of cases of directed ribosomal frameshifting have been reported in RNA viruses, as well as in procaryotic and eucaryotic genes. Changes in the efficiency of ribosomal frameshifting can have major effects on the ability of cells to propagate viruses which use this mechanism. Furthermore, studies of this process can illuminate the mechanisms involved in the maintenance of the normal translation reading frame. The yeast Saccharomyces cerevisiae killer virus system uses programmed −1 ribosomal frameshifting to synthesize its gene products. Strains harboring the mof2-1 allele demonstrated a fivefold increase in frameshifting and prevented killer virus propagation. In this report, we present the results of the cloning and characterization of the wild-type MOF2 gene. mof2-1 is a novel allele of SUI1, a gene previously shown to play a role in translation initiation start site selection. Strains harboring the mof2-1 allele demonstrated a mutant start site selection phenotype and increased efficiency of programmed −1 ribosomal frameshifting and conferred paromomycin sensitivity. The increased frameshifting observed in vivo was reproduced in extracts prepared from mof2-1 cells. Addition of purified wild-type Mof2p/Sui1p reduced frameshifting efficiencies to wild-type levels. Expression of the human SUI1 homolog in yeast corrects all of the mof2-1 phenotypes, demonstrating that the function of this protein is conserved throughout evolution. Taken together, these results suggest that Mof2p/Sui1p functions as a general modulator of accuracy at both the initiation and elongation phases of translation.  相似文献   

3.
4.
A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1 and mof6-1 strains cannot maintain M(1) dsRNA at 30°, but, paradoxically, do not lose L-A. The mof2-1, mof5-1 and mof6-1 strains are temperature sensitive for growth at 37°, and all three show striking cell cycle phenotypes. The mof2-1 strains arrest with mother and daughter cells almost equal in size, mof5-1 arrests with multiple buds and mof6-1 arrests as single large unbudded cells. mof2-1 and mof5-1 strains are also Pet(-). The mof mutations show differential effects on various frameshifting signals.  相似文献   

5.
Y Cui  J D Dinman    S W Peltz 《The EMBO journal》1996,15(20):5726-5736
The mof4-1 (maintenance of frame) allele in the yeast Saccharomyces cerevisiae was isolated as a chromosomal mutation that increased the efficiency of -1 ribosomal frameshifting at the L-A virus frameshift site and caused loss of M1, the satellite virus of L-A. Here, we demonstrate that strains harboring the mof4-1 allele inactivated the nonsense-mediated mRNA decay pathway. The MOF4 gene was shown to be allelic to UPF1, a gene whose product is involved in the nonsense-mediated mRNA decay pathway. Although cells harboring the mof4-1 allele of the UPF1 gene lose the M1 virus, mutations in other UPF genes involved in nonsense-mediated mRNA decay maintain the M1 virus. The mof4-1 strain is more sensitive to the aminoglycoside antibiotic paromomycin than a upf1 delta strain, and frameshifting efficiency increases in a mof4-1 strain grown in the presence of this drug. Further, the ifs1 and ifs2 alleles previously identified as mutations that enhance frameshifting were shown to be allelic to the UPF2 and UPF1 genes, respectively, and both ifs strains maintained M1. These results indicate that mof4-1 is a unique allele of the UPF1 gene and that the gene product of the mof4-1 allele affects both -1 ribosomal frameshifting and mRNA turnover.  相似文献   

6.
7.
In Saccharomyces cerevisiae strain 6-1G-P188 about 10 per cent of rRNA genes exist as extrachromosomal copies of rDNA repeating units. These extrachromosomal copies can be isolated as covalently closed molecules with lengths around 3mu. We have constructed a set of hybrid plasmids containing the bacterial vector pBR325, the LEU2 gene of yeast encoding beta-isopropylmalatedehydrogenase and various EcoRI restriction fragments of the 3mu DNA. We have tested the ability of our hybrid plasmids to transform LEU2 strain DC5 to leucine prototrophy. One of the plasmids Rcp21/11 transforms DC5 at the frequency comparable with that obtained with YEp13, containing the 2mu DNA replication origin. The 2400 bp EcoRI-B fragment of the 3mu DNA in Rcp21/11 carries a gene for 5S rRNA and two spacers. Our results on transformation experiments allow un to suggest that this EcoRI fragment also carries the 3mu DNA replication origin. Yeast transformants containing this plasmid are highly unstable but during the prolonged growth in selective conditions the stabilization of the LEU+ phenotype is observed being most likely a result of integration of Rcp21/11 into the yeast chromosome.  相似文献   

8.
rRNAs are the central players in the reactions catalyzed by ribosomes, and the individual rRNAs are actively involved in different ribosome functions. Our previous demonstration that yeast 5S rRNA mutants (called mof9) can impact translational reading frame maintenance showed an unexpected function for this ubiquitous biomolecule. At the time, however, the highly repetitive nature of the genes encoding rRNAs precluded more detailed genetic and molecular analyses. A new genetic system allows all 5S rRNAs in the cell to be transcribed from a small, easily manipulated plasmid. The system is also amenable for the study of the other rRNAs, and provides an ideal genetic platform for detailed structural and functional studies. Saturation mutagenesis reveals regions of 5S rRNA that are required for cell viability, translational accuracy, and virus propagation. Unexpectedly, very few lethal alleles were identified, demonstrating the resilience of this molecule. Superimposition of genetic phenotypes on a physical map of 5S rRNA reveals the existence of phenotypic clusters of mutants, suggesting that specific regions of 5S rRNA are important for specific functions. Mapping these mutants onto the Haloarcula marismortui large subunit reveals that these clusters occur at important points of physical interaction between 5S rRNA and the different functional centers of the ribosome. Our analyses lead us to propose that one of the major functions of 5S rRNA may be to enhance translational fidelity by acting as a physical transducer of information between all of the different functional centers of the ribosome.  相似文献   

9.
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.  相似文献   

10.
11.
Using a genetic selection for suppressors of a UGA nonsense mutation in trpA, we have isolated a G to A transition mutation at position 1491 in the decoding region of 16S rRNA. This suppressor displayed no codon specificity, suppressing UGA, UAG and UAA nonsense mutations and +1 and -1 frameshift mutations in lacZ. Subsequent examination of a series of mutations at G1491 and its base-pairing partner C1409 revealed various effects on nonsense suppression and frameshifting. Mutations that prevented Watson-Crick base pairing between these residues were observed to increase misreading and frameshifting. However, double mutations that retained pairing potential produced an antisuppressor or hyperaccurate phenotype. Previous studies of antibiotic resistance mutations and antibiotic and tRNA footprints have placed G1491 and C1409 near the site of codon-anticodon pairing. The results of this study demonstrate that the nature of the interaction of these two residues influences the fidelity of tRNA selection.  相似文献   

12.
Isolation and characterization of rat ribosomal DNA clones   总被引:8,自引:0,他引:8  
Four EcoRI fragments, which contain the transcribed portion of the rat rDNA repeat, have been isolated from a rat genome library cloned in lambda Charon 4A vector. Three of the fragments, 9.6, 6.7, and 4.5 kb, from clones lambda ChR-B4, lambda Nr-42, and lambda ChR-C4B9, contained part of the 5'-NTS, the 5'-ETS, 18S rDNA, ITS-1, 5.8S rDNA, 28S rDNA and approximately 3.5 kb of the 3'-NTS. Two EcoRI fragments, from clones lambda ChR-B4 and lambda ChR-B7E12, which coded for the 5'-NTS, the ETS, and most of the 18S rDNA, differed by 1 kb near the EcoRI site upstream of the 5' terminus of 18S rRNA. Restriction maps of the cloned DNA fragments were constructed by cleavage of the fragments with various restriction endonucleases and Southern hybridization with 18S, 5.8S, and 28S rRNA. These maps were confirmed and extended by subcloning several regions of the repeat in pBR322.  相似文献   

13.
A L Lu  N Blin  D W Stafford 《Gene》1981,14(1-2):51-62
A 1.35-kb EcoRI fragment of Lytechinus variegatus DNA containing a single 5S rRNA gene has been cloned into the plasmid vector pACYC184. Four clones from different transformation experiments contain 5S rDNA inserts of about the same size and have the same restriction enzyme digestion patterns for the enzymes HaeIII, HinfI, HhaI, and AluI. One EcoRI site near the HindIII site of the plasmid vector pACYC184 is missing in all the four clones. By DNA sequencing, the missing EcoRI ws found to be EcoRI site, d(AAATTN)d(TTTAAN) in pLu103, one of the four 5S rDNA clones. The structure of pLu103 was determined by restriction mapping and blot hybridization. Three restriction fragments, 1.0-kb HaeIII/HaeIII, 0.375-kb AluI/AluI and 0.249-kb MboII/MboII, which contain the 5S rRNA coding region, have been subcloned into the EcoRI site of the plasmid pACYC184. The organization of 5S rRNA genes in the sea urchin genome was also investigated. It was found that restriction endonuclease HaeIII has a single recognition site within each 5S rDNA repeat, and yields two fragment lengths, 1.2 and 1.3 kb. The behavior of these 5S rRNA genes when total L. variegatus DNA is partially digested with HaeIII is consistent with an arrangement of 5S rRNA genes in at least two tandemly repeated, non-interspersed families. Both the coding region and spacer region of the 5S rRNA gene in pLu103 hybridize to 1.2 and 1.3-kb rDNA families. This indicates that the cloned EcoRI fragment of 5S rDNA in pLu103 represents one single repeat of 5S rDNA in the genome.  相似文献   

14.
We have cloned and characterized Neurospora crassa ribosomal deoxyribonucleic acid (rDNA). The rDNA is found as a tandemly repeated 6.0-megadalton sequence. We have mapped a portion of the rDNA repeat unit with respect to its sites for 13 restriction endonucleases and defined those regions coding for the 5. 8S, 17S, and 26S ribosomal ribonucleic acids (rRNA's). We have also isolated several clones containing 5S rRNA sequences. The 5S rRNA coding sequences are not found within the rDNA repeat unit. We found that the sequences surrounding the 5S rRNA coding regions are highly heterogeneous.  相似文献   

15.
An average of 200 copies of the rRNA gene (rDNA) is clustered in a long tandem array in Saccharomyces cerevisiae. FOB1 is known to be required for expansion/contraction of the repeats by stimulating recombination, thereby contributing to the maintenance of the average copy number. In Deltafob1 cells, the repeats are still maintained without any fluctuation in the copy number, suggesting that another, unknown system acts to prevent repeat contraction. Here, we show that condensin acts together with FOB1 in a functionally complemented fashion to maintain the long tandem repeats. Six condensin mutants possessing severely contracted rDNA repeats were isolated in Deltafob1 cells but not in FOB1+ cells. We also found that the condensin complex associated with the nontranscribed spacer region of rDNA with a major peak coincided with the replication fork barrier (RFB) site in a FOB1-dependent fashion. Surprisingly, condensin association with the RFB site was established during S phase and was maintained until anaphase. These results indicate that FOB1 plays a novel role in preventing repeat contraction by regulating condensin association and suggest a link between replication termination and chromosome condensation and segregation.  相似文献   

16.
The organization of the ribosomal ribonucleic acid (rRNA) genes (rDNA) of Bacillus subtilis was examined by cleaving the genome with several restriction endonucleases. The rDNA sequences were assayed by hybridization with purified radioactive rRNA's. Our interpretation of the resulting electrophoretic patterns is strengthened by an analysis of a fragment of B. subtilis rDNA cloned in Escherichia coli. The results indicated that there are eight rRNA operons in B. subtilis. Each operon contains one copy of the sequences coding for 16S, 23S, and 5S rRNA. The sequences coding for 5S rRNA were shown to be more closely linked to the 23S rRNA genes than to the 16S rRNA genes.  相似文献   

17.
A mutant LEU4 gene (LEU4fbr-2), responsible for both the overproduction of iso-amyl alcohol in yeast and the phenotype of yeast resistant to 5,5,5-trifluoro-dl-leucine (TFL), was isolated from a TFL-resistant mutant of Saccharomyces cerevisiae F-7. The single copy number of LEU4fbr-2 complemented the leucine auxotrophy of S. cerevisiae HB190 (a, leu4, leu5), and also transformed it to TFL-resistant. Leucine-insensitive α-isopropylmalate synthase activity was detected in the crude extract of the Leu+ transformant. Also sake yeast Kyokai no. 7 (K-7) was transformed by the LEU4fbr-2 gene to TFL-resistant. The resulting transformants produced 3∼30-fold higher levels of iso-amyl alcohol (approx. 50∼475 ppm) in shaking cultures, while in static cultures the increase in productivity was only 2.5-fold compared with that of recipient strain K-7. The isolated LEU4fbr-2 gene may be useful as a positive selectable marker for the transformation of industrial yeast.  相似文献   

18.
Restriction endonuclease cleavage analyses of cloned and genomic DNA samples indicate that the structure of the DNA encoding the large cytoplasmic RNAs (rDNAs) is altered in Drosophila mercatorum lines which exhibit an abnormal abdomen (aa) phenotype. In a majority of the rDNA repeat units from aa flies, the 28S coding sequence is interrupted by a large [5-6 kilobase pairs (kbp)] insert. A subclone containing this inserted DNA (ins 3) hybridizes primarily to rDNA-containing sequences in in situ and genomic blot hybridization experiments. Additionally, genomic nitrocellulose blot hybridization analyses show that ins- containing rDNA repeat units are clustered in a spontaneously arising aa mutant. This rDNA alteration in D. mercatorum flies with the aa phenotype more closely resembles the bobbed (bb) defect of D. hydei than the bb defect of D. melanogaster, which involves alterations in rDNA copy number. By analogy with the other Drosophila systems, we propose that the altered D. mercatorum rDNA repeat units are defective in rRNA production at a critical stage. The lowered levels of rRNA ultimately would limit the concentration of ribosomes needed to produce large quantities of a protein (in these cases, juvenile hormone esterase) needed for normal development.  相似文献   

19.
In Saccharomyces cerevisiae the majority of the genes for 5S rRNA lie within a 9kb rDNA sequence that is present as 100-200 tandemly-repeated copies on Chromosome XII. Following our observations that about 10% of yeast 5S rRNA exists as minor variant sequences, we screened a collection of yeast DNA fragments cloned in lambda gt for 5S rRNA genes whose flanking sequences differed from those adjacent to 5S rRNA genes of the rDNA repeat. Three variant 5S rRNA genes were isolated on the basis of such dissimilarity to rDNA repeat sequences. They display a remarkable conservation of their DNA in the vicinity of the 5S coding region, and are examples of a minor form of 5S rRNA coding sequence present in a small number of copies in the yeast genome. These variant sequences appear to be transcribed as efficiently as 5S rRNA genes of the rDNA repeat. In one of our isolates of the variant sequence a Ty transposable element is inserted 145bp upstream of the initiation point for 5S rRNA synthesis.  相似文献   

20.
J M Guay  A Huot  S Gagnon  A Tremblay  R C Levesque 《Gene》1992,114(2):165-171
The ribosomal DNA (rDNA encoding rRNA) of the obligately intracellular protozoan parasite, Toxoplasma gondii, was identified, cloned, physically mapped, its copy number determined, and the 5S gene sequenced. Using total RNA as a probe, a collection of recombinant lambda phages containing copies of rDNA were isolated from a lambda 2001 tachyzoite genomic library. Northern gel hybridization confirmed specific homology of the 7.5-kb rDNA unit, subcloned into pTZ18R, to T. gondii rRNA. The mapped rDNA found in pTOX1 contained small ribosomal subunit (SS; 18S)- and large ribosomal subunit (LS; 26S)-encoding genes localized using intragenic heterologous probes from the conserved sequences of the SS (18S) and LS (28S) Xenopus laevis genes. the physical mapping data, together with partial digestion experiments and Southern gel hybridization, confirmed a 7.5-kb rDNA unit arranged in a simple head-to-tail fashion that is tandemly repeated. We estimated the rDNA repeat copy number in T. gondii to be 110 copies per haploid tachyzoite genome. Parts of the SS gene and the complete 5S gene were sequenced. The 5S gene was found to be within the rDNA locus, a rare occurrence found only in some fungi and protozoa. Secondary-structure analysis revealed an organization remarkably similar to the 5S RNA of eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号