首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal stem cells are resistant to cellular aging   总被引:2,自引:1,他引:1  
The epidermis of the skin, acting as the primary physical barrier between self and environment, is a dynamic tissue whose maintenance is critical to the survival of an organism. Like most other tissues and organs, the epidermis is maintained and repaired by a population of resident somatic stem cells. The epidermal stem cells reside in the proliferative basal cell layer and are believed to persist for the lifetime of an individual. Acting through intermediaries known as transit amplifying cells, epidermal stem cells ensure that the enormous numbers of keratinocytes required for epidermal homeostasis to be maintained are generated. This continual demand for new cell production must be met over the entire lifetime of an individual. Breakdown of the epidermal barrier would have catastrophic consequences. This leads us to question whether or not epidermal stem cells represent a unique population of cells which, by necessity, might be resistant to cellular aging. We hypothesized that the full physiologic functional capacity of epidermal stem cells is maintained over an entire lifetime. Using murine skin epidermis as our model system, we compared several properties of young and old adult epidermal stem cells. We found that, over an average mouse's lifetime, there was no measurable loss in the physiologic functional capacity of epidermal stem cells, leading us to conclude that murine epidermal stem cells resist cellular aging.  相似文献   

2.
A significant proportion of the human population suffers from some form of skin disorder, whether it be from burn injury or inherited skin anomalies. The ideal treatment for skin disorders would be to regrow skin tissue from stem cells residing in the individual patient's skin. Locating these adult stem cells and elucidating the molecules involved in orchestrating the production of new skin cells are important steps in devising more-efficient methods of skin production and wound healing via the ex vivo expansion of patient keratinocytes in culture. This review focuses on the structure of the skin, the identification of skin stem cells, and the role of Notch, Wnt and Hedgehog signalling cascades in regulating the fate of epidermal stem cells.  相似文献   

3.
Taylor G  Lehrer MS  Jensen PJ  Sun TT  Lavker RM 《Cell》2000,102(4):451-461
The location of follicular and epidermal stem cells in mammalian skin is a crucial issue in cutaneous biology. We demonstrate that hair follicular stem cells, located in the bulge region, can give rise to several cell types of the hair follicle as well as upper follicular cells. Moreover, we devised a double-label technique to show that upper follicular keratinocytes emigrate into the epidermis in normal newborn mouse skin, and in adult mouse skin in response to a penetrating wound. These findings indicate that the hair follicle represents a major repository of keratinocyte stem cells in mouse skin, and that follicular bulge stem cells are potentially bipotent as they can give rise to not only the hair follicle, but also the epidermis.  相似文献   

4.
5.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

6.
Location and phenotype of human adult keratinocyte stem cells of the skin   总被引:32,自引:0,他引:32  
The location and identity of interfollicular epidermal stem cells of adult human skin remain undefined. Based on our previous work in both adult murine and neonatal human foreskin, we demonstrate that cell surface levels of the alpha6 integrin and the transferrin receptor (CD71) are valid markers for resolving a putative stem cell, transit amplifying and differentiating compartment in adult human skin by flow cytometry. Specifically, epidermal cells expressing high levels of alpha6 integrin and low levels of the transferrin receptor CD71 (phenotype alpha6 (bri)CD71(dim)) exhibit several stem cell characteristics, comprising a minor population (2%-5%) of the K14(bri) fraction, enriched for quiescent and small blast-like cells with high clonogenic capacity, lacking the differentiation marker K10. Conversely, the majority of K14(bri) K10(neg) epidermal cells express high levels of CD71 (phenotype alpha6 (bri)CD71(bri)), and represent the actively cycling fraction of keratinocytes displaying greater cell size due to an increase in cytoplasmic area, consistent with their being transient amplifying cells. The alpha6 (bri)CD71(bri) population exhibited intermediate clonogenic capacity. A third population of K14(dim) but K10 positive epidermal cells could be identified by their low levels of alpha6 integrin expression (i.e. alpha6 (dim) cells), representing the differentiation compartment; predictably, this subpopulation exhibited poor clonogenic efficiency. Flow cytometric analysis for the hair follicle bulge region (stem cell) marker K15 revealed preferential expression of this keratin in alpha6 (bri) cells (i.e., both stem and transient amplifying fractions), but not the alpha6 (dim) population. Given that K15 positive cells could only be detected in the deep rete ridges of adult skin in situ, we conclude that stem and transient amplifying cells reside in this location, while differentiating (K15 negative) cells are found in the shallow rete ridges.  相似文献   

7.
Controlling skin morphogenesis: hope and despair   总被引:14,自引:0,他引:14  
To master tissue and organ morphogenesis necessitates a thorough understanding of the cellular and molecular events involved in development, renewal, repair and regeneration. Skin reconstruction is the paradigm of tissue engineering. The transplantation of autologous adult epidermal stem cells is a life-saving procedure as it regenerates the indispensable barrier function of the skin, but the reconstruction of fully functional skin has been hampered by the complexity of the process. The recent identification of multipotent epithelial stem cells in adult hair follicles and of multipotent stem cells in dermis raises new hopes.  相似文献   

8.
The adult hair follicle: cradle for pluripotent neural crest stem cells   总被引:6,自引:0,他引:6  
This review focuses on the recent identification of two novel neural crest-derived cells in the adult mammalian hair follicle, pluripotent stem cells, and Merkel cells. Wnt1-cre/R26R compound transgenic mice, which in the periphery express beta-galactosidase in a neural crest-specific manner, were used to trace neural crest cells. Neural crest cells invade the facial epidermis as early as embryonic day 9.5. Neural crest-derived cells are present along the entire extent of the whisker follicle. This includes the bulge area, an epidermal niche for keratinocyte stem cells, as well as the matrix at the base of the hair follicle. We have determined by in vitro clonal analysis that the bulge area of the adult whisker follicle contains pluripotent neural crest stem cells. In culture, beta-galactosidase-positive cells emigrate from bulge explants, identifying them as neural crest-derived cells. When these cells are resuspended and grown in clonal culture, they give rise to colonies that contain multiple differentiated cell types, including neurons, Schwann cells, smooth muscle cells, pigment cells, chondrocytes, and possibly other types of cells. This result provides evidence for the pluripotentiality of the clone-forming cell. Serial cloning showed that bulge-derived neural crest cells undergo self-renewal, which identifies them as stem cells. Pluripotent neural crest cells are also localized in the back skin hair of adult mice. The bulge area of the whisker follicle is surrounded by numerous Merkel cells, which together with innervating nerve endings form slowly adapting mechanoreceptors that transduce steady skin indentation. Merkel cells express beta-galactosidase in double transgenic mice, which confirms their neural crest origin. Taken together, our data indicate that the epidermis of the adult hair follicle contains pluripotent neural crest stem cells, termed epidermal neural crest stem cells (eNCSCs), and one newly identified neural crest derivative, the Merkel cell. The intrinsic high degree of plasticity of eNCSCs and the fact that they are easily accessible in the skin make them attractive candidates for diverse autologous cell therapy strategies.  相似文献   

9.
Epidermal stem cells are retained in vivo throughout skin aging   总被引:2,自引:0,他引:2  
Giangreco A  Qin M  Pintar JE  Watt FM 《Aging cell》2008,7(2):250-259
In healthy individuals, skin integrity is maintained by epidermal stem cells which self-renew and generate daughter cells that undergo terminal differentiation. It is currently unknown whether epidermal stem cells influence or are affected by skin aging. We therefore compared young and aged skin stem cell abundance, organization, and proliferation. We discovered that despite age-associated differences in epidermal proliferation, dermal thickness, follicle patterning, and immune cell abundance, epidermal stem cells were maintained at normal levels throughout life. These findings, coupled with observed dermal gene expression changes, suggest that epidermal stem cells themselves are intrinsically aging resistant and that local environmental or systemic factors modulate skin aging.  相似文献   

10.
Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.  相似文献   

11.
Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.  相似文献   

12.
The use of epidermal stem cells and their progeny for tissue engineering and cell therapy represents a source of hope and major interest in view of applications such as replacing the loss of functionality in failing tissues or obtaining physiologic skin equivalents for skin grafting. The use of such cells necessitates the isolation and purification of rare populations of keratinocytes and then increasing their numbers by mass culture. This is not currently possible since part of the specific phenotype of these cells is lost once the cells are placed in culture. Furthermore, few techniques are available to unequivocally detect the presence of skin stem cells and/or their progeny in culture and thus quantify them. Two different sources of stem cells are currently being studied for skin research and clinical applications: skin progenitors either obtained from embryonic stem cells (ESC) or from selection from adult skin tissue. It has been shown that "keratinocyte-like" cells can be derived from ESC; however, the culturing processes must still be optimized to allow for the mass culture of homogeneous populations at a controlled stage of differentiation. The functional characterization of such populations must also be more thoroughly achieved. In order to use stem cells from adult tissues, improvements must be made in order to obtain a satisfactory degree of purification and characterization of this rare population. Distinguishing stem cells from progenitor cells at the molecular level also remains a challenge. Furthermore, stem cell research inevitably requires cultivating these cells outside their physiological environment or niche. It will thus be necessary to better understand the impact of this specific environmental niche on the preservation of the cellular phenotypes of interest.  相似文献   

13.
In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present in the basal layer of the interfollicular epidermis and in the bulge region of the hair follicle play a critical role for normal tissue maintenance. In wound healing, multipotent epidermal stem cells contribute to re-epithelization. It is possible that defects in growth control of either epidermal stem cells or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells.  相似文献   

14.
Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.  相似文献   

15.
We previously demonstrated that keratin 15 expressing cells present in the bulge region of hair follicles exhibit properties of adult stem cells. We have now established and characterized an immortalized adult epithelial stem cell line derived from cells isolated from the human hair follicle bulge region. Telogen hair follicles from human skin were microdissected to obtain an enriched population of keratin 15 positive skin stem cells. By expressing human papillomavirus 16 E6/E7 genes in these stem cells, we have been able to culture the cells for >30 passages and maintain a stable phenotype after 12 mo of continuous passage. The cell line was compared to primary stem cells for expression of stem cell specific proteins, for in vitro stem cell properties, and for their capacity to differentiate into different cell lineages. This new cell line, named Tel-E6E7 showed similar expression patterns to normal skin stem cells and maintained in vitro properties of stem cells. The cells can differentiate into epidermal, sebaceous gland, and hair follicle lineages. Intact beta-catenin dependent signaling, which is known to control in vivo hair differentiation in rodents, is maintained in this cell line. The Tel-E6E7 cell line may provide the basis for valid, reproducible in vitro models for studies on stem cell lineage determination and differentiation.  相似文献   

16.
Plasticity of epidermal adult stem cells derived from adult goat ear skin   总被引:3,自引:0,他引:3  
Here we report the isolation and characterization of pluripotent stem cells from adult goat skin. We found that these primary cells have the properties of embryonic stem cells (ESC), including the expression of appropriate immunological markers and the capability of forming embryoid bodies. The subcultured cells also show the characteristics of stem cells, such as the expression of CK19, beta(1-)integrin, P63, and formation of holo-clones in culture. Therefore, we termed these cells epidermal adult stem cells (EpiASC), although their origin was not identified. We have shown that clones of individual EpiASC proliferate and differentiate in culture to produce neurons, cardiomyocytes, osteoblasts, and occytes. Further, we cultivated EpiASC on bioengineered dermis and denuded human amniotic membrane (HAM), to reconstruct artificial skin and corneal epithelium. We successfully transplanted those artificial tissues in goats with acute full-thickness skin defect (AFTSD) and limbal stem cell deficiency (LSCD), respectively. Our results showed that indeed EpiASC reconstructed the skin (hair was observed in restored areas), and repaired the damaged cornea of goats with total LSCD. These data confirm that EpiASC can differentiate into different functional cell types in vivo or in vitro. Due to their high degree of inherent plasticity, and to their easy accessibility for collection from the skin, EpiASC are excellent candidate sources for diverse cell therapies.  相似文献   

17.
Keratinocytes have the ability to adhere to extracellular matrix rapidly. With this in mind, in this study we isolated keratinocytes known as rapidly adhering (RA) cells. To compare epidermal regenerative abilities, skin substitutes were reconstructed by adding keratinocytes or RA cells to two groups of bioengineered dermis made by fibroblasts and hair follicle dermal cells respectively. After transplantation, the results illustrated that the skin substitutes including RA cells were integrated into the host tissue. Furthermore, with hair follicle dermal cells' influences, the RA cells could form structures very similar to normal hair follicles. These results indicate that RA cells are predominately comprised of epidermal stem cells. The results also demonstrated that besides the reciprocal interaction of epidermal stem cells with dermal cells, the interaction of epidermal stem cells with keratinocytes were critical in epidermis morphogenesis and self-renewal, and application of RA cells could optimize engineering of skin substitutes.  相似文献   

18.
表皮干细胞研究进展   总被引:4,自引:0,他引:4  
王丽娟  王友亮  杨晓 《遗传》2010,32(3):198-204
哺乳动物表皮中包含有多种不同类型的表皮干细胞, 它们共同维持了表皮组织结构的稳态并在皮肤创伤的修复中起重要作用。表皮干细胞具备干细胞两大基本特征: 自我更新和分化, 两者间平衡的破坏通常是皮肤肿瘤和其他皮肤疾病的根源。文章着重叙述了表皮干细胞存在的证据、两大基本特征、分裂模式、调节表皮干细胞的信号通路以及维持其稳态的微观和宏观环境。  相似文献   

19.
20.
Skin and its appendages provide a protective barrier against the assaults of the environment. To perform its role, epidermis undergoes an ongoing renewal through a balance of proliferation and differentiation/apoptosis called homeostasis. Keratinocyte stem cells reside in a special microenvironment called niche in basal epidermis, adult hair follicle, and sebaceous glands. While a definite marker has yet to be detected, data raised part in humans and part in the mouse system point to a critical role of stem and its progeny transit amplifying cells in epidermal homeostasis. Stem cells are protected from apoptosis and are long resident in adult epidermis. This renders them more prone to be the origin of skin cancer. In this review, we will outline the main features of adult stem cells in mouse and humans and discuss their fate in relation to differentiation, apoptosis, and cancer. J. Cell. Physiol. 225: 310–315, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号