首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phalloidin tightly binds to actin and converts soluble actin into depolymerization-resistant actin filaments. Phalloidin promotes the potassium-dependent, calcium-independent efflux of γ-amino butyric acid and nore-pinephrine from synaptosomes but inhibits the potassium-facilitated, calcium-dependent release of these neurotransmitters. This suggests that an actomyosin system is involved in synaptic transmission.  相似文献   

2.
3.
4.
The rabbit H,K-ATPase alpha- and beta-subunits were transiently expressed in HEK293 T cells. The co-expression of the H,K-ATPase alpha- and beta-subunits was essential for the functional H,K-ATPase. The K+-stimulated H,K-ATPase activity of 0.82 +/- 0.2 micromol/mg/h saturated with a K0.5 (KCl) of 0.6 +/- 0.1 mM, whereas the 2-methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080)-inhibited ATPase of 0.62 +/- 0.07 micromol/mg/h saturated with a Ki (SCH 28080) of 1.0 +/- 0.3 microM. Site mutations were introduced at the N,N-dicyclohexylcarbodiimide-reactive residue, Glu-857, to evaluate the role of this residue in ATPase function. Variations in the side chain size and charge of this residue did not inhibit the specific activity of the H,K-ATPase, but reversal of the side chain charge by substitution of Lys or Arg for Glu produced a reciprocal change in the sensitivity of the H,K-ATPase to K+ and SCH 28080. The K0.5 for K+stimulated ATPase was decreased to 0.2 +/-.05 and 0.2 +/-.03 mM, respectively, in Lys-857 and Arg-857 site mutants, whereas the Ki for SCH 28080-dependent inhibition was increased to 6.5 +/- 1.4 and 5.9 +/- 1.5 microM, respectively. The H,K-ATPase kinetics were unaffected by the introduction of Ala at this site, but Leu produced a modest reciprocal effect. These data indicate that Glu-857 is not an essential residue for cation-dependent activity but that the residue influences the kinetics of both K+ and SCH 28080-mediated functions. This finding suggests a possible role of this residue in the conformational equilibrium of the H,K-ATPase.  相似文献   

5.
A guinea pig kidney membrane preparation was incubated with thimerosal and then thoroughly washed. Comparison of the properties of the native and the modified membranes showed that (a) Na++K+-dependent activity is substantially inhibited by thimerosal; (b) thimerosal does not diminish Na+-dependent ATPase activity; and (c) the thimerosal treated enzyme, like the native enzyme, is phosphorylated in the presence of Na+ and ATP, and dephosphorylated upon the addition of K+. It is suggested that thimerosal does not affect the binding of ATP to the high-affinity catalytic site, but that it blocks the binding of ATP to a low affinity modifying site the occupation of which is essential for the dissociation of the stable K+-dephosphoenzyme and the recycling of the enzyme.  相似文献   

6.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+ -dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration: (formula; see text) Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+ -dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+ -sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+ -stimulated K+ -dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+ -sites of the Na+ -stimulated pathway.  相似文献   

7.
8.
电压门控钙通道受钙依赖性易化和失活两种相互对立的反馈机制调节.不同浓度的钙离子,通过作为钙感受器的钙调蛋白的介导,主要与钙通道α1亚基羧基端的多个不连续片段发生复杂的相互作用,分别引发钙依赖性易化和失活.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其它钙结合蛋白等也参与此调节过程.新近研究表明,钙通道的钙依赖性调节机制失衡与心律失常等的发病机制密切相关.  相似文献   

9.
10.
Koch-Nolte F  Fischer S  Haag F  Ziegler M 《FEBS letters》2011,585(11):1651-1656
NAD(+) plays central roles in energy metabolism as redox carrier. Recent research has identified important signalling functions of NAD(+) that involve its consumption. Although NAD(+) is synthesized mainly in the cytosol, nucleus and mitochondria, it has been detected also in vesicular and extracellular compartments. Three protein families that consume NAD(+) in signalling reactions have been characterized on a molecular level: ADP-ribosyltransferases (ARTs), Sirtuins (SIRTs), and NAD(+) glycohydrolases (NADases). Members of these families serve important regulatory functions in various cellular compartments, e.g., by linking the cellular energy state to gene expression in the nucleus, by regulating nitrogen metabolism in mitochondria, and by sensing tissue damage in the extracellular compartment. Distinct NAD(+) pools may be crucial for these processes. Here, we review the current knowledge about the compartmentation and biochemistry of NAD(+)-converting enzymes that control NAD(+) signalling.  相似文献   

11.
12.
The catalytic part of chloroplast thylakoid ATPase, the chloroplast coupling factor CF1, is reversibly inactivated during incubation in the presence of Mg2+. The inactivation has two phases. Its fast phase occurs at basic pH of the incubation medium (k = 6 min-1), while the slow phase ( k = 0.1-0.2 min-1) depends on pH only slightly throughout the studied range (5.5-9.0). As followed from changes in the inactivation effect of magnesium ions, Mg2+ affinity for the enzyme decreases dramatically with decreasing medium pH. The pH-dependence of Mg2+ dissociation apparent constant suggests that the binding/dissociation equilibrium is determined by protonation/deprotonation of specific acid-base groups of the enzyme. The analysis of pH-dependence plots gives the equilibrium constant of magnesium dissociation (3-9 M) and the dissociation constant of the protonated groups pK 5.8-6.7). Sodium azide is known to stabilize the inactive CF1-MgADP complex; when added to the incubation medium it diminishes the Mg2+ dissociation constant and has no effect on the dissociation constant of the acid-base groups. At lower pH, Mg2+-inactivated CF1-ATPase reactivates. Octyl glucoside accelerates the reactivation, while Triton-100 affects it only slightly. The reactivation rate of membrane-bound CF1 (thylakoid ATPase) inactivated by preincubation with Mg2+ in the presence of gramicidin is a few times higher than that of isolated CF1. These results suggest that the reactivation of isolated and membrane-bound CF1-ATPase is determined by protonation of a limited number of acid-base groups buried in the enzyme molecule.  相似文献   

13.
In contrast with the transient pre-replicative increase in calmodulin (CaM) level observed in proliferative activated cells, postnatal development of rat testis was paralleled by 3 specific rises in CaM. The first one occurred between 5 and 10 days, coincident with the appearance and proliferation start of spermatogonia and Sertoli cells. Meiosis accomplishment and spermatid differentiation were paralleled by 2 additional rises, at 24 and 32 days, respectively. The plateau phase of testis growth was coincident with the appearance of maturating spermatids and spermatozoa in the germinal epithelium, and with a decrease in CaM content. Testicular DNA:g wet tissue ratio reached the highest level in 15-day-old rats and gradually decreased up to 35 days, when a constant level was reached. A similar level of Ca2+-CaMBPs was observed in 5- and 20-day-old rat testis. Although all subcellular fractions showed the ability to bind CaM in a Ca2+-dependent manner, CaM was mainly recovered in the nuclear and soluble fractions of adult and immature rat testis. Several Ca2+-CaMBPs with an apparent Mr of 82, 75, 64, 19, and 14 kD were purified by affinity chromatography from pachytene primary spermatocyte nuclear matrix. Ca2+-CaMBPs showing an Mr of 120, 78, 72, and 66 kD were also purified from the supernatant obtained after DNA and RNA hydrolysis of meiotic nuclei. Major cytosolic Ca2+-CaMBPs of primary spermatocytes showed an Mr of 120, 84, 44, and 39 kD. The functions that these Ca2+-CaMBPs might have during the first meiotic prophase is discussed. Mol. Reprod. Dev. 48:127–136, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
The activation of Ca2+ -dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+ -dependent transport of alpha-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+ -independent uptake of the norbornane amino acid.  相似文献   

15.
The activation of Ca2+-dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+-dependent transport of α-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+-independent uptake of the norbornane amino acid.  相似文献   

16.
The solution structure of contryphan-Vn, a cyclic peptide with a double cysteine S-S bridge and containing a D-tryptophan extracted from the venom of the cone snail Conus ventricosus, has been determined by NMR spectroscopy using a variety of homonuclear and heteronuclear NMR methods and restrained molecular dynamics simulations. The main conformational features of backbone contryphan-Vn are a type IV beta-turn from Gly 1 to Lys 6 and a type I beta-turn from Lys 6 to Cys 9. As already found in other contryphans, one of the two prolines--the Pro4--is mainly in the cis conformation while Pro7 is trans. A small hydrophobic region probably partly shielded from solvent constituted from the close proximity of side chains of Pro7 and Trp8 was observed together with a persistent salt bridge between Asp2 and Lys6, which has been revealed by the diagnostic observation of specific nuclear Overhauser effects. The salt bridge was used as a restraint in the molecular dynamics in vacuum but without inserting explicit electrostatic contribution in the calculations. The backbone of the unique conformational family found of contryphan-Vn superimposes well with those of contryphan-Sm and contryphan-R. This result indicates that the contryphan structural motif represents a robust and conserved molecular scaffold whose main structural determinants are the size of the intercysteine loop and the presence and location in the sequence of the D-Trp and the two Pro residues.  相似文献   

17.
Potassium chloride is the major salt recycled in most insect secretory systems. Ion and water reabsorption occur in the rectum by active transport of Cl- and largely passive movement of K+. Both these processes are stimulated several fold by a neuropeptide hormone acting via cyclic AMP (cAMP). This Cl- transport process was investigated by using intracellular ion-sensitive microelectrodes, radiotracer flux measurements, voltage clamping, ion substitutions and inhibitors. the mucosal entry step for Cl- is energy-requiring and highly-selective, and is stimulated directly by cAMP and luminal K+. Under some experimental conditions, measured electrochemical potentials for cations across the mucosal membrane are too small to drive C;- entry by NaCl or KCl cotransport mechanisms; moreover, net 36Cl- flux is independent of the apical Na+ potential. Similarly no evidence for a HCO3- -Cl- exchange was obtained. We conclude that Cl- transport in locust gut is different from mechanisms currently proposed for vertebrate tissues.  相似文献   

18.
To increase our understanding of the physical nature of the Na+ and K+ forms of the Na+ + K+-dependent ATPase, thermal-denaturation studies were conducted in different types of ionic media. Thermal-denaturation measurements were performed by measuring the regeneration of ATPase activity after slow pulse exposure to elevated temperatures. Two types of experiments were performed. First, the dependence of the thermal-denaturation rate on Na+ and K+ concentrations was examined. It was found that both cations stabilized the pump protein. Also, K+ was a more effective stabilizer of the native state than was Na+. Secondly, a set of thermodynamic parameters was obtained by measuring the temperature-dependence of the thermal-denaturation rate under three ionic conditions: 60 mM-K+, 150 mM-Na+ and no Na+ or K+. It was found that ion-mediated stabilization of the pump protein was accompanied by substantial increases in activation enthalpy and entropy, the net effect being a less-pronounced increase in activation free energy.  相似文献   

19.
These experiments examined effects of several ligands on the K+ p-nitrophenylphosphatase activity of the (Na+,K+)-ATPase in membranes of a rat brain cortex synaptosomal preparation. K+-independent hydrolysis of this substrate by the synaptosomal preparation was studied in parallel; the rate of hydrolysis in the absence of K+ was approximately 75% less than that observed when K+ was included in the incubation medium. The response to the H+ concentrations was different: K+-independent activity showed a pH optimum around 6.5–7.0, while the K+-dependent activity was relatively low at this pH range. Ouabain (0.1 mM) inhibited K+-dependent activity 50%; a concentration 10 times higher did not produce any appreciable effect on the K+-independent activity. Na+ did not affect K+-independent activity at all, while the same ligand concentration inhibited sharply the K+-dependent activity; this inhibition was not competitive with the substrate,p-nitrophenyl phosphate. K+-dependent activity was stimulated by Mg2+ with low affinity (millimolar range), and 3 mM Mg2+ produced a slight stimulation of the activity in absence of K+, which could be interpreted as Mg2+ occupying the K+ sites. Ca2+ had no appreciable effect on the activity in the absence of K+. However, in the presence of K+ a sharp inhibition was found with all Ca2+ concentrations studied. ATP (0.5 mM) did not affect the K+-independent activity, but this nucleotide behaved as a competitive inhibitor top-nitrophenylphosphate. Pi inhibited activity in the presence of K+, competively to the substrate, so it could be considered as the second product of the reaction sequence.Abbreviations used p-NPP p-nitrophenylphosphate - p-NPPase rho-nitrophenylphosphatase activity  相似文献   

20.
Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only 60% in these cells. Cells infused with either N-methyl-D-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by 200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution. L-type calcium current; calcium-dependent inactivation; facilitation; phosphorylation; cesium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号